Despite decades of extensive research on thermoelectric materials, BiTe alloys have dominated room-temperature applications. However, recent advancements have highlighted the potential of alternative candidates, notably MgSb-MgBi alloys, for low- to mid-temperature ranges. This study optimizes the low-temperature composition of this alloy system through Nb addition (MgNb(SbBi)Te), characterizing composition, microstructure, and transport properties. A high MgBi content improves the band structure by increasing weighted mobility while enhancing the microstructure. Crucially, it suppresses detrimental grain boundary scattering effects for room-temperature applications. While grain boundary scattering suppression is typically achieved through grain growth, our study reveals that Nb addition significantly reduces grain boundary resistance without increasing grain size. This phenomenon is attributed to a grain boundary complexion transition, where Nb addition transforms the highly resistive MgBi-rich boundary complexion into a less resistive, metal-like interfacial phase. This marks the rare demonstration of chemistry noticeably affecting grain boundary interfacial electrical resistance in MgSb-MgBi. The results culminate in a remarkable advancement in , reaching 1.14 at 330 K. The device is found to be 1.03 at 350 K, which further increases to 1.24 at 523 K and reaches a theoretical maximum device efficiency (η) of 10.5% at 623 K, underscoring its competitive performance. These findings showcase the outstanding low-temperature performance of -type MgBi-MgSb alloys, rivaling BiTe, and emphasize the critical need for continued exploration of complexion phase engineering to advance thermoelectric materials further.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577319 | PMC |
http://dx.doi.org/10.1021/acsami.4c12046 | DOI Listing |
Nanotechnology
January 2025
School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, 12 Qinghe Xiaoying East Road, Xisanqi Street, Haidian District, Beijing, Beijing, 100192, CHINA.
Lead-free cesium bismuth iodide (CsBiI) perovskite exhibits extraordinary optoelectronic properties and attractive potential in various optoelectronic devices, especially the application for photodetectors. However, most CsBiIphotodetectors demonstrated poor detection performance due to the difficulty in obtaining high-quality polycrystalline films. Therefore, it makes sense to modulate the preparation of high-quality CsBiIpolycrystalline films and expand its applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
We combine atomistic and continuum simulation methods to study the defect chemistry of a model grain boundary in UO. Using atomistic methods, we calculate the formation energies of oxygen interstitials, uranium vacancies, and hole polarons (U ions) across the Σ5(310)[001] symmetric tilt grain boundary. This information is then used as input in a continuum model of point-defect concentrations at the grain boundary and in its vicinity, taking into account electrostatic (space-charge) effects.
View Article and Find Full Text PDFNano Lett
January 2025
School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand.
Understanding metastable structural transitions under beam irradiation is essential for the phase engineering of nanomaterials. However, in situ studies of beam-induced structural transitions remain challenging. This work uses an electron beam in aberration-corrected high-angle annular dark-field scanning transmission electron microscopy to irradiate Au nanocrystals at room temperature.
View Article and Find Full Text PDFScience
January 2025
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.
View Article and Find Full Text PDFSmall
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
Fivefold twins are extensively present in nanoparticles and nanowires, enhancing their performance in physical, chemical, and mechanical properties. However, a deep insight into the correlation between mechanical properties and fivefold twins in bulk nanograined materials is lacking due to synthesis difficulties. Here, a bulk fivefold-twinned nanograined Ni is synthesized via electrodeposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!