Gray leaf spot (GLS) is an important corn disease reportedly caused by Cercospora zeae-maydis and C. zeina. Recently, flutriafol, a demethylation inhibitor (azole) fungicide received EPA registration as Xyway® LFR®, a product that is applied at planting for management of fungal diseases in corn, including suppression of GLS. In this study, 448 Cercospora spp. isolates were collected in 2020 and 2021 from symptomatic corn leaf samples submitted from the United States and Ontario, Canada. The Cercospora spp. were identified using multi-locus genotyping of the internal transcribe spacer (ITS), elongation factor 1-α (EF1), calmodulin (CAL), histone H3 (HIS), and actin (ACT) gene. Based on the multi-locus phylogenetic analyses, six species were identified; C. cf. flagellaris (n = 77), C. kikuchii (n = 4), C. zeae-maydis (n = 361), Cercospora sp. M (n = 2), Cercospora sp. Q (n = 1), and Cercospora sp. T (n = 3). In subsequent pathogenicity tests using selected isolates from each of these species, only C. zeae-maydis resulted in symptoms on corn with no disease symptoms observed after inoculation with C. cf. flagellaris, C. kikuchii, Cercospora sp. M, Cercospora sp. Q, and Cercospora sp. T. While disease symptoms were observed on soybean following inoculation with C. cf. flagellaris, C. kikuchii, and Cercospora sp. Q, but not the other three species. Fungicide sensitivity of Cercospora spp. to flutriafol was assessed using a subset of 340 isolates. The minimum inhibitory concentration (MIC) to inhibit the growth of Cercospora spp. completely was determined based on growth of each species on flutriafol-amended clarified V8 agar at nine concentrations. The EC50 was also calculated from the same trial by measuring relative growth as compared to the non-amended control. Cercospora zeae-maydis was sensitive to flutriafol with mean MIC values of 2.5 µg/mL and EC50 values ranging from 0.016 to 1.020 µg/mL with a mean of 0.346 µg/mL. Cercospora cf. flagellaris, C. kikuchii, Cercospora sp. M, Cercospora sp. Q, and Cercospora sp. T had mean EC50 values of 1.25 µg/mL, 7.14 µg/mL, 2.48 µg/mL, 1.81 µg/mL, and 2.24 µg/mL respectively. These findings will assist in monitoring the sensitivity to the flutriafol fungicide in Cercospora spp. populations.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-03-24-0585-REDOI Listing

Publication Analysis

Top Keywords

cercospora cercospora
24
cercospora spp
20
cercospora
18
flagellaris kikuchii
16
kikuchii cercospora
12
flutriafol fungicide
8
fungicide sensitivity
8
corn disease
8
cercospora zeae-maydis
8
disease symptoms
8

Similar Publications

Background: This research proposes an easy to apply quality assurance pipeline for hyperspectral imaging (HSI) systems used for plant phenotyping. Furthermore, a concept for the analysis of quality assured hyperspectral images to investigate plant disease progress is proposed. The quality assurance was applied to a handheld line scanning HSI-system consisting of evaluating spatial and spectral quality parameters as well as the integrated illumination.

View Article and Find Full Text PDF

Structural characterization, in-silico studies, and antifungal activity of 5-methylmellein isolated from endophytic .

3 Biotech

January 2025

Department of Pharmaceutical Chemistry, School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand 248009 India.

Article Synopsis
  • The study examined the use of fungal endophytes to discover bioactive compounds, focusing on a phenolic compound called 5-methylmellein found in a specific endophytic fungus.
  • This compound was analyzed through various methods and showed promising antifungal activity against several plant pathogenic fungi, with effective inhibition rates recorded.
  • In tests on apples and grapes, 5-methylmellein significantly decreased fruit decay compared to untreated controls, highlighting its potential as an eco-friendly solution for agricultural pest management.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how pectin-degrading bacteria affect the fermentation of cigar tobacco, specifically looking at microbial communities and physical/chemical properties to reduce bitterness and enhance aroma.
  • Two strains, YX-2 and DM-3, were isolated, showing strong capabilities in breaking down pectin, leading to decreased pectin content and increased sugar levels in the tobacco.
  • The results indicated that using these bacteria improves microbial diversity and positively impacts sugar metabolism, contributing to flavor enhancement in the final product.
View Article and Find Full Text PDF

QTL-seq, linkage mapping, and whole-genome resequencing revealed a new locus (qCLS5.1) controlling Cercospora canescens resistance in mungbean and Receptor-like protein 12 (RLP12) genes as candidate genes for the resistance. Cercospora leaf spot (CLS) disease, caused by Cercospora canescens, is a common disease of mungbean (Vigna radiata).

View Article and Find Full Text PDF
Article Synopsis
  • Frogeye leaf spot, traditionally a southern disease, is increasingly affecting soybeans in North Central USA, prompting a study on its population structure in Indiana.
  • Researchers identified 49 multi-locus genotypes (MLGs) from 234 isolates, grouping them into three clusters and confirming a balanced distribution of mating types across most counties.
  • The analysis revealed the dominance of one genotype (MLG1), associated with QoI-resistant isolates, and indicated significant linkage disequilibrium in the population, with implications for understanding the disease's spread and management.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!