Despite high theoretical efficiencies and rapid improvements in performance, high-efficiency ≈1.2 eV mixed Sn-Pb perovskite solar cells (PSCs) generally rely on poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT: PSS) as the hole transport layer (HTL); a material that is considered to be a bottleneck for long-term stability due to its acidity and hygroscopic nature. Seeking to replace PEDOT: PSS with an alternative HTL with improved atmospheric and thermal stability, herein, a silole derivative (Silole-COOH) tuned with optimal electronic properties and efficient carrier transport by incorporating a carboxyl functional group is designed, which results in an optimal band alignment for hole extraction from Sn-Pb perovskites and robust air and thermal stability. Thin films composed of the Silole-COOH exhibit superior conductivity and carrier mobility compared to PEDOT: PSS, in addition to reduced nonradiative quasi-Fermi-level splitting losses at the HTL/perovskite interface and improved quality of Sn-Pb perovskite. Replacement of PEDOT: PSS with Silole-COOH leads to 23.2%-efficient single-junction Sn-Pb PSCs, 25.8%-efficient all-perovskite tandems, and long operating stability in ambient air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202411968 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!