Introduction: Glyburide is a drug for the treatment of diabetes mellitus and has a potential effect on Alzheimer's disease. It is also a BCS Class 2 drug with low solubility and low permeability. Developing a nanosuspension formulation and increasing the solubility and dissolution rate of glyburide is required to overcome this challenge.

Methods: Thus, the goal of this work was to create glyburide nanosuspensions by ball milling and homogenizing glyburide to increase its solubility and rate of dissolution. To achieve this, the nanosuspension formulation was optimized using a central composite design. Zeta potential, particle size distribution and solubility were selected by way of dependent variables, and ball milling time, homogenization cycles, and Pluronic F-127/glyburide ratio were chosen as independent variables. Glyburide nanosuspensions were obtained with a particle size of 244.6 ± 2.685 nm. In vitro release and solubility studies were conducted following optimization.

Results: The saturation solubility of glyburide was nearly doubled as a result of the nanocrystal formation. Xray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the nanosuspension. SEM images confirmed that the nanocrystal formation process was successful. Glyburide and the excipients have no incompatibilities, their physical states have not changed, and the preparation method has not affected the stability of glyburide, according to DCS, XRD, and FT-IR analyses.

Conclusion: These studies indicated that a combination of ball milling and homogenization techniques significantly enhanced the solubility of glyburide and its release from the formulation. Consequently, this approach can be applied to formulations characterized by low absorption and limited bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113816128321501240828054050DOI Listing

Publication Analysis

Top Keywords

ball milling
16
glyburide
9
nanosuspensions ball
8
milling homogenization
8
homogenization techniques
8
central composite
8
composite design
8
solubility
8
enhanced solubility
8
nanosuspension formulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!