Nanog is a crucial regulatory factor in maintaining the self-renewal and pluripotency of embryonic stem cells. It is involved in various biological processes, such as early embryonic development, cell reprogramming, cell cycle regulation, the proliferation and migration of primordial germ cells. While research on this gene has primarily focused on mammals, there has been a growing interest in studying nanog in fish. However, there is a notable lack of comprehensive reviews regarding this gene in fish, which is essential for guiding future research. This review aims to provide a thorough summary of the gene's structure, expression patterns, functions and regulatory mechanisms in fish. The findings suggest that nanog probably has both conserved and divergent functions in regulating cell pluripotency, early embryonic development, and germ cell development in teleosts compared to other species, including mammals. These insights lay the foundation for future research and applications of the nanog gene, providing a new perspective for understanding the evolution and conserved charactristics of teleost nanog.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-024-02182-x | DOI Listing |
Int J Med Sci
January 2025
Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
Pig production through crossbreeding methods is a pillar of the swine industry; however, research on the fertilization ability of male pigs in crossbreeds is lacking. Therefore, this study investigated the effects of Duroc sperm (DS) and Landrace sperm (LS) on fertility in Yorkshire × Landrace × Duroc (YLD) oocytes. Sperm were collected from the Duroc and Landrace species, and sperm characteristics, viability, and acrosome reactions were analyzed using flow cytometry.
View Article and Find Full Text PDFUnlabelled: The neurodegenerative disorder Frontotemporal Dementia (FTD) can be caused by a repeat expansion (GGGGCC; G4C2) in C9orf72. The function of wild-type C9orf72 and the mechanism by which the C9orf72-G4C2 mutation causes FTD, however, remain unresolved. Diverse disease models including human brain samples and differentiated neurons from patient-derived induced pluripotent stem cells (iPSCs) identified some hallmarks associated with FTD, but these models have limitations, including biopsies capturing only a static snapshot of dynamic processes and differentiated neurons being labor-intensive, costly, and post-mitotic.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China. Electronic address:
Human embryonic stem cells (hESCs) possess the ability to differentiate into various cell types, which is intricately linked to fatty acid synthesis and metabolism. Fatty acid desaturase 2 (FADS2) plays important role in fatty acid metabolism. In this study, we elucidate that the inhibition of FADS2 by SC-26196 enhances hESC pluripotency by upregulating key pluripotency genes such as POU5F1, NANOG, and KLF5.
View Article and Find Full Text PDFPLoS One
January 2025
Ionis Pharmaceuticals, Inc., Carlsbad, CA, United States of America.
Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!