Validating alternative oxidase (AOX) gene family as efficient marker consortium for multiple-resilience in Xylella fastidiosa-infected Vitis holobionts.

Plant Cell Rep

Functional Cell Reprogramming and Organism Plasticity' (FunCROP), Non-Institutional Competence Focus (NICFocus), Coordinated From Foros de Vale de Figueira, 7050-704, Alentejo, Portugal.

Published: September 2024

AOX gene family in motion marks in-born efficiency of respiration adjustment; can serve for primer screening, genotype ranking, in vitro-plant discrimination and a SMART perspective for multiple-resilient plant holobiont selection. The bacteria Xylella fastidiosa (Xf) is a climate-dependent, global threat to many crops of high socio-economic value, including grapevine. Currently designed breeding strategies for Xf-tolerant or -resistant genotypes insufficiently address the danger of biodiversity loss by focusing on selected threats, neglecting future environmental conditions. Thus, breeding strategies should be validated across diverse populations and acknowledge temperature changes and drought by minimizing the metabolic-physiologic effects of multiple stress-induced oxygen shortages. This research hypothesizes that multiple-resilient plant holobionts achieve lifelong adaptive robustness through early molecular and metabolic responses in primary stress target cells, which facilitate efficient respiration adjustment and cell cycle down-regulation. To validate this concept open-access transcriptome data were analyzed of xylem tissues of Xf-tolerant and -resistant Vitis holobionts from diverse trials and genetic origins from early hours to longer periods after Xf-inoculation. The results indicated repetitive involvement of alternative oxidase (AOX) transcription in episodes of down-regulated transcripts of cytochrome c oxidase (COX) at various critical time points before disease symptoms emerged. The relation between transcript levels of COX and AOX ('relCOX/AOX') was found promising for plant discrimination and primer screening. Furthermore, transcript levels of xylem-harbored bacterial consortia indicated common regulation with Xf and revealed stress-induced early down-regulation and later enhancement. LPS priming promoted the earlier increase in bacterial transcripts after Xf-inoculation. This proof-of-principle study highlights a SMART perspective for AOX-assisted plant selection towards multiple-resilience that includes Xf-tolerance. It aims to support timely future plant diagnostics and in-field substitution, sustainable agro-management, which protects population diversity and strengthens both conventional breeding and high-tech, molecular breeding research. Furthermore, the results suggested early up-regulation of bacterial microbiota consortia in vascular-enriched tissues as a novel additional trait for future studies on Xf-tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-024-03327-3DOI Listing

Publication Analysis

Top Keywords

alternative oxidase
8
oxidase aox
8
aox gene
8
gene family
8
vitis holobionts
8
respiration adjustment
8
primer screening
8
smart perspective
8
multiple-resilient plant
8
breeding strategies
8

Similar Publications

F-ATP Synthase Inhibitors and Targets.

Antibiotics (Basel)

December 2024

School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.

() infection causes tuberculosis (TB). TB is one of the most intractable infectious diseases, causing over 1.13 million deaths annually.

View Article and Find Full Text PDF

Function of the alternative electron transport chain in the mitosome.

bioRxiv

October 2024

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.

Unlabelled: possess a remanent mitochondrion called the mitosome, which lacks DNA, the tricarboxylic acid cycle, a conventional electron transport chain, and ATP synthesis. The mitosome retains ubiquinone and iron sulfur cluster biosynthesis pathways, both of which require protein import that relies on the membrane potential. It was previously proposed that the membrane potential is generated by electrons transferred through an alternative respiratory pathway coupled to a transhydrogenase (TH) that pumps hydrogens out of the mitosome.

View Article and Find Full Text PDF

The titan arum (), commonly known as the corpse flower, produces the largest unbranched inflorescence in the world. Its rare blooms last only a few days and are notable both for their burst of thermogenic activity and for the odor of rotting flesh by which they attract pollinators. Studies on the titan arum can therefor lend insight into the mechanisms underlying thermogenesis as well as the production of sulfur-based volatiles, about which little is known in plants.

View Article and Find Full Text PDF

Mitochondrial AOX1a and an HO feed-forward signalling loop regulate flooding tolerance in rice.

Plant Biotechnol J

November 2024

Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, ROC.

Flooding is a widespread natural disaster that causes tremendous yield losses of global food production. Rice is the only cereal capable of growing in aquatic environments. Direct seeding by which seedlings grow underwater is an important cultivation method for reducing rice production cost.

View Article and Find Full Text PDF

Acanthamoebae, pathogenic free-living amoebae, can cause Granulomatous Amoebic Encephalitis (GAE) and keratitis, and for both types of infection, no adequate treatment options are available. As the metabolism of pathogens is an attractive treatment target, we set out to examine the energy metabolism of Acanthamoeba castellanii and studied the aerobic and anaerobic capacities of the trophozoites. Under anaerobic conditions, or in the presence of inhibitors of the electron-transport chain, A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!