Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite remarkable breakthroughs in pharmacotherapy, many potential therapies for aging remain unexplored. Punicalin (PUN), an ellagitannin component, exerts anti-inflammatory, antioxidant, and anti-apoptotic effects. This study investigated the beneficial effects of PUN against age-related brain damage in mice and explored the underlying mechanisms. We validated the protective effects of PUN against D-galactose (D-gal)-induced neuroinflammation and subsequent neuronal damage in BV2 microglia and N2a cells, respectively, in vitro. In vivo experiments were conducted on mice that were administered an 8-week regimen of intraperitoneal injections of D-gal at a dosage of 150 mg/kg/day, concurrently with oral gavage of PUN at the same dose. PUN inhibited the production of D-gal-induced inflammatory cytokines (iNOS, COX2, TNF-α, IL-6, IL-2, and IL-1β) in BV2 cells and conferred protection to N2a cells against synaptic damage mediated by BV2 microglia-induced neuroinflammation. The in vivo findings revealed that PUN considerably improved memory and learning deficits, reduced MDA levels, enhanced GSH-Px, CAT, and SOD activities, and modulated the expression of inflammatory proteins such as iNOS, COX-2, IL-1β, IL-2, IL-6, and TNF-α. Furthermore, PUN inhibited the secretion of SASP factors (ICAM-1, PAI-1, MMP-3, and MMP-9), decreased microglial activation, and reduced astrocytosis. Additionally, PUN suppressed the expression of cGAS, p-STING, p-TBK1, p-p65, and p-IRF3 in aging mouse brains and cultured BV2 microglia. In conclusion, PUN improved cognitive dysfunction in aging mice through antioxidant and anti-inflammatory mechanisms via inhibition of the cGAS-STING pathway, suggesting that it can be a promising therapeutic agent for brain aging and aging-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.8343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!