EGCG inhibits migration, invasion and epithelial-mesenchymal transition of renal cell carcinoma by activating TFEB-mediated autophagy.

Chem Biol Interact

Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China. Electronic address:

Published: November 2024

Background: The incidence of renal cell carcinoma (RCC) is already in the top ten of all types of cancers, with more than 4 %. Epigallocatechin gallate (EGCG), a polyphenolic compound extracted from green tea, has been shown to be effective in the treatment of various tumors. However, limited studies have demonstrated the effect of EGCG on RCC and its underlying molecular mechanisms.

Methods: After exposure to gradient concentration (0,5,10,20,40,60,80,100 μM) of EGCG, the cell viability of RCC cells was determined by MTT assay. The migration and invasion abilities of RCC cells were investigated by wound healing and transwell assays. The expression levels of proteins involved in the epithelial-mesenchymal transition (EMT) and autophagy were explored by Western blotting assays. The formation of autophagosome was detected by electron microscope and LC3 puncta assays. Nude mouse xenograft model was used as the model system in vivo.

Results: In the present study, EGCG significantly inhibited the migration, invasion and EMT of RCC cells in a concentrated manner. Further exploration of its mechanism indicated that autophagy is involved in EGCG-mediated metastasis inhibition and EMT inhibition of RCC cells. In addition, EGCG could significantly up-regulate the transcription factor EB (TFEB) and promotes its nuclear localization. The incorporation of TFEB into the nucleus enhanced the transcriptional levels of molecules associated with autophagy. TFEB knockdown inhibited EGCG-mediated autophagy activation, metastasis and EMT inhibition in RCC cells.

Conclusions: In conclusion, these findings demonstrate for the first time that EGCG inhibits migration, invasion, and EMT of RCC by activating TFEB-mediated autophagy. Therefore, the combination of EGCG and TFFB activators or EMT inhibitors is expected to be a promising therapeutic strategy for RCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2024.111250DOI Listing

Publication Analysis

Top Keywords

migration invasion
16
rcc cells
16
rcc
9
egcg
8
egcg inhibits
8
inhibits migration
8
epithelial-mesenchymal transition
8
renal cell
8
cell carcinoma
8
activating tfeb-mediated
8

Similar Publications

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Extracellular vesicles from pancreatic cancer and its tumour microenvironment promote increased Schwann cell migration.

Br J Cancer

January 2025

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

ALB inhibits tumor cell proliferation and invasion by regulating immune microenvironment and endoplasmic reticulum stress in clear cell renal cell carcinoma.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China. Electronic address:

Objective: The aim of this work is to identify putative hub genes for the advancement of clear cell renal cell carcinoma (ccRCC) and determine the fundamental mechanisms.

Methods: We employed multiple bioinformatics techniques to screen hub genes. Key hub gene expression levels in ccRCC were assessed.

View Article and Find Full Text PDF

CircKIAA0182 Enhances Lung Cancer Progression and Chemoresistance through Interaction with YBX1.

Cancer Lett

January 2025

Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China; Institute of Clinical Pharmacology, Central South University, Changsha 410078, P. R. China. Electronic address:

Lung cancer, particularly non-small cell lung cancer (NSCLC), remains a leading cause of cancer-related mortality. Resistance to platinum-based chemotherapy, such as cisplatin, significantly limits treatment efficacy. Circular RNAs (circRNAs) have emerged as key regulators of cancer progression and chemotherapy resistance due to their stable structure, which protects them from degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!