Flood simulation using LISFLOOD and inundation effects: A case study of Typhoon In-Fa in Shanghai.

Sci Total Environ

Key Laboratory of Geographic Information Science, Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China; School of Geospatial Artificial Intelligence, East China Normal University, Shanghai 200241, China. Electronic address:

Published: December 2024

Urban flooding threatens residents and their property, necessitating timely and accurate flood simulations to enhance prevention measures. However, as a megacity, Shanghai presents a complex underlying surface that proves challenging to assess accurately in existing studies. To simulate the dynamic flooding caused by Typhoon In-Fa in Shanghai from July 23rd to 28th 2021, we employed the LISFLOOD hydrodynamic model with multi-source data and validated the flooded area using the S1FLOOD deep learning model with Sentinel-1 satellite imagery. Based on simulated flood results and a flood depth classification system, we quantified the impacts of flood inundation on population, land use, and buildings. Key findings include: (1) The most severe flooding period in Shanghai occurred on July 25th and 26th 2021. (2) The LISFLOOD model effectively captured the extent of inundation, with the very-high flood depth zone covering 98.07 % of the area identified as flooded by the S1FLOOD and Sentinel-1. (3) Peak-affected individuals were recorded on July 25th 2021. (4) Farmland experienced the most extensive flooding among land use types, while residential buildings were notably affected among building types. Our study reconstructed the spatiotemporal dynamics of Typhoon In-Fa-induced flooding in Shanghai. We mapped the spatial extent and water depths, revealing the dynamic impacts of inundation on population, land use, and buildings across urban areas. This comprehensive framework for flood simulation and inundation impact analysis offers a valuable approach to improve urban flood emergency response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176372DOI Listing

Publication Analysis

Top Keywords

flood
8
flood simulation
8
typhoon in-fa
8
in-fa shanghai
8
flood depth
8
inundation population
8
population land
8
land buildings
8
july 25th
8
inundation
5

Similar Publications

Cause of Death Analysis in a 9½-Year-Old with COVID-19 and Dravet Syndrome.

Pathophysiology

January 2025

Division of Anatomical Pathology, Department of Pathology, College of Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.

: Cause of death analysis is fundamental to forensic pathology. We present the case of a 9½-year-old girl with a genetically confirmed diagnosis of Dravet syndrome who died in her sleep with no evidence of motor seizure. She also had a lifelong history of recurrent pneumonias and, along with her family, had tested positive for COVID-19 10 days before death.

View Article and Find Full Text PDF

Climate change poses significant challenges to global food security by altering precipitation patterns and increasing the frequency of extreme weather events such as droughts, heatwaves, and floods. These phenomena directly affect agricultural productivity, leading to lower crop yields and economic losses for farmers. This study leverages Artificial Intelligence (AI) and Explainable Artificial Intelligence (XAI) techniques to predict crop yields and assess the impacts of climate change on agriculture, providing a novel approach to understanding complex interactions between climatic and agronomic factors.

View Article and Find Full Text PDF

The impact of arbuscular mycorrhizal colonization on flooding response of .

Front Plant Sci

January 2025

Department of General and Applied Botany, Institute of Biology, Leipzig University, Leipzig, Germany.

Climate change is expected to lead to an increase in precipitation and flooding. Consequently, plants that are adapted to dry conditions have to adjust to frequent flooding periods. In this study, we investigate the flooding response of , a Mediterranean plant adapted to warm and dry conditions.

View Article and Find Full Text PDF

Although oil extraction is indispensable for meeting worldwide energy demands and ensuring industrial sustainability, various hazards are observed. Therefore, this study examined the chemical oil recovery-related environmental consequences concerning water, soil, ecosystem, and human health damages. A numerical analysis explored the mathematical model for oil extraction from unconventional sources by utilising 3D porous prism geometries under high-temperature conditions.

View Article and Find Full Text PDF

Climate change affects peri-urban agricultural systems. However, most studies on Climate-Smart Agriculture (CSA) often focused on climate-smart villages in the Sahel region. This study investigated peri-urban farming systems in West African Sahel cities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!