Pharmacokinetics of nanomedicines can be improved by a temporal blockade of mononuclear phagocyte system (MPS) through the interaction with other biocompatible nanoparticles. Liposomes are excellent candidates as blocking agents, but the efficiency of the MPS blockade can greatly depend on the liposome properties. Here, we investigated the dependence of the efficiency of the induced MPS blockadeandon the size of blocking liposomes in the 100-500 nm range. Saturation of RAW 264.7 macrophage uptake was observed for phosphatidylcholine/cholesterol liposomes larger than 200 nm. In mice, liposomes of all sizes exhibited a blocking effect on liver macrophages, prolonging the circulation of subsequently administrated magnetic nanoparticles in the bloodstream, reducing their liver uptake, and increasing accumulation in the spleen and lungs. Importantly, these effects became more pronounced with the increase of liposome size. Optimization of the size of the blocking liposomes holds the potential to enhance drug delivery and improve cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ad7e6f | DOI Listing |
Cell Rep
October 2024
Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France. Electronic address:
Tissue-resident mononuclear phagocytes (MPs) are an abundant cell population whose localization in situ reflects their identity. To enable assessment of their heterogeneity, we developed the red/green/blue (RGB)-Mac mouse based upon combinations of Cx3cr1 and Csf1r reporter transgenes, providing a complete visualization of their spatial organization in situ. 3D-multi-photon imaging for spatial mapping and spectral cytometry employing the three markers in combination distinguished tissue-associated monocytes, tissue-specific macrophages, and three subsets of connective-tissue-associated MPs, including CCR2 monocyte-derived cell, CX3CR1, and FOLR2 interstitial subsets, associated with distinct sub-anatomic territories.
View Article and Find Full Text PDFBiomed Mater
October 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
Pharmacokinetics of nanomedicines can be improved by a temporal blockade of mononuclear phagocyte system (MPS) through the interaction with other biocompatible nanoparticles. Liposomes are excellent candidates as blocking agents, but the efficiency of the MPS blockade can greatly depend on the liposome properties. Here, we investigated the dependence of the efficiency of the induced MPS blockadeandon the size of blocking liposomes in the 100-500 nm range.
View Article and Find Full Text PDFNat Immunol
October 2024
Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
The drivers of immune evasion are not entirely clear, limiting the success of cancer immunotherapies. Here we applied single-cell spatial and perturbational transcriptomics to delineate immune evasion in high-grade serous tubo-ovarian cancer. To this end, we first mapped the spatial organization of high-grade serous tubo-ovarian cancer by profiling more than 2.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China. Electronic address:
Rapid uptake of nanoparticles by mononuclear phagocyte system (MPS) significantly hampers their therapeutic efficacy. Temporal MPS blockade is one of the few ways to overcome this barrier - the approach rediscovered many times under different names but never extensively used in clinic. Using meta-analysis of the published data we prove the efficacy of this technique for enhancing particle circulation in blood and their delivery to tumours, describe a century of its evolution and potential combined mechanism behind it.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!