A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment. | LitMetric

Thermo-responsible PNIPAM-grafted polystyrene microspheres for mesenchymal stem cells culture and detachment.

Biomed Mater

State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.

Published: October 2024

The preparation of cells is a critical step in cell therapy. To ensure the effectiveness of cells used for clinical treatments, it is essential to harvest adherent cells from the culture media in a way that preserves their high viability and full functionality. In this study, we developed temperature-responsive poly(N-isopropylacrylamide) (PNIPAM)-grafted polystyrene (PS) microspheres using reversible addition-fragmentation chain transfer polymerization. These microspheres allow for the non-destructive harvesting of cultured cells through temperature changes. The composition and physicochemical properties of the PNIPAM-grafted PS microspheres were confirmed using infrared spectroscopy, elemental analysis, dynamic light scattering, and thermogravimetric analysis.experiments demonstrated that these microspheres exhibit excellent biocompatibility, supporting the adhesion and proliferation of various cells. Moreover, the microspheres showed good temperature responsiveness in thermosensitive detachment experiments with GFP-HepGcells and umbilical cord mesenchymal stem cells (UC-MSCs). Additionally, through orthogonal experiments, we identified a cell detachment aid mixture that significantly improved the dispersibility of cells detached from the microspheres, enhancing the efficiency of thermosensitive cell detachment by approximately 40%. The harvested UC-MSCs retained their capacity for re-proliferation and trilineage differentiation. Consequently, the temperature-responsive microspheres developed in this study, combined with the cell detachment aid mixtures, hold great potential for large-scale culture and harvesting of therapeutic cells in clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ad7e6eDOI Listing

Publication Analysis

Top Keywords

cell detachment
12
cells
9
pnipam-grafted polystyrene
8
microspheres
8
polystyrene microspheres
8
mesenchymal stem
8
stem cells
8
cells culture
8
cells clinical
8
detachment aid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!