The recycling of e-waste can lead to the release of organic chemicals when materials containing additives are subjected to dismantling and grinding. In this context, the exposure of workers from a Catalonian e-waste facility to flame retardants and plasticizers (including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs) and dechloranes) was assessed using T-shirts and wristbands as passive samplers. The study area includes an area exclusively dedicated to cathodic ray-tube (CRT) TVs dismantling, and a grinding area where the rest of e-waste is ground. All the families of compounds were detected in both T-shirts and wristbands, with the highest concentration levels corresponding to OPEs, followed by PBDEs, NBFRs, and dechloranes. The CRT area presented higher concentration levels than the grinding area. The compounds with higher concentrations in T-shirts were 2-ethylhexyl diphenyl phosphate (EHDPP), diphenyl cresyl phosphate (DCP) and triphenyl phosphate (TPHP), and the total concentration of all groups ranged between 293 and 8324 ng/dm-h (hour). In the case of the wristbands, the most abundant compounds were DCP, TPHP, and BDE-209, with total concentrations between 188 and 2248 ng/dm-h. The two sampling methods appear to be complementary, as T-shirts collect coarser particles, while wristbands also capture volatile compounds. Based on normalized surface and time concentrations, the estimated daily intake (EDI) through dermal contact was calculated and carcinogenic and non-carcinogenic risks (CR and non-CR) associated with this activity assessed. The results show median CR 29 and 16 times below the threshold in CRT and grinding areas respectively. The non-CR medians were 2 and 3 times below the threshold, although in the CRT area one exceptional value surpassed the threshold, suggesting that risk can exist for some workers in the facility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.109021 | DOI Listing |
Environ Pollut
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:
The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China. Electronic address:
Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs).
View Article and Find Full Text PDFSci Total Environ
January 2025
Institut de Química Avançada de Catalunya (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
The environmental persistence of organophosphate flame retardants (OPFRs) in water is becoming and environmental concern. White Rot Fungi (WRF) have proven its capability to degrade certain OPFRs such as tributyl phosphate (TBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP). Despite this capability, there is limited knowledge about the specific pathways involved in the degradation.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
Microbe-mediated remediation becomes a desire method for removal of persistent organic pollutants (POPs) due to its eco-friendly and sustainable nature. The improvement of practical feasibility requires constructing comprehensive species pool, while it is still limited by the rapid recognition of potential bacterial resources from environment. Here, based on the relative abundances of bacterial OTUs and pollutant concentrations, we established indexes to assess their tolerance to organochlorine pesticides (OCPs) and flame retardants (FRs) that are atmospheric transported and naturally accumulated in forest soil via forest filter effect.
View Article and Find Full Text PDFFront Chem
December 2024
School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.
In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!