Under Water Superelastic Porous Nanofibrous Sponge for Efficient RNA Separation and Purification.

ACS Appl Mater Interfaces

Key Laboratory of Textile Fiber and Products, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.

Published: October 2024

Developing monolithic materials for chromatography columns with a novel interconnected porous structure is vital for the enhancement of the separation efficiency of RNA purification processes. Herein, a porous nanofibrous sponge (PNFS) is constructed by freeze molding and freeze-drying a nanofiber dispersion with ethylene vinyl alcohol copolymer nanofibers as the skeleton, chitosan (CS) and polyethylenimine (PEI) as the binders, and glutaraldehyde (GA) as the crosslinking agent. The results show that when the CS content of the dispersion is 1.5 wt %, PNFS demonstrates a high static adsorption capacity of 406.5 mg/g (30.7 mg/m) and a dynamic adsorption capacity of 382.6 mg/g (28.9 mg/m) at a flow rate of 1 mm/min. Moreover, PNFS shows a high specific adsorption performance toward RNA in the presence of bovine serum albumin, lecithin, or DNA by adjusting the solution pH value and the method of gradient elution. Besides, PNFS presents exceptional performance in the rapid separation of RNA from HT22 cells without degradation. This result can be attributed to optimized morphology, pore structure, and comprehensive performance of PNFS, benefiting from the synergistic effect of the highly oriented porous structure and CS-PEI interaction derived from the high-density adsorption ligands on the channel walls of PNFS. This work provided an efficient strategy to handle the permeability/adsorptivity trade-off for ion-exchange chromatographic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c10047DOI Listing

Publication Analysis

Top Keywords

porous nanofibrous
8
nanofibrous sponge
8
porous structure
8
adsorption capacity
8
pnfs
6
water superelastic
4
porous
4
superelastic porous
4
sponge efficient
4
rna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!