DNA splice junction classification is a crucial job in computational biology. The challenge is to predict the junction type (IE, EI, or N) from a given DNA sequence. Predicting junction type is crucial for understanding gene expression patterns, disease causes, splicing regulation, and gene structure. The location of the regions where exons are joined, and introns are removed during RNA splicing is very difficult to determine because no universal rule guides this process. This study presents a two-layer hybrid approach inspired by ensemble learning to overcome this challenge. The first layer applies the grey wolf optimizer (GWO) for feature selection. GWO's exploration ability allows it to efficiently search a vast feature space, while its exploitation ability refines promising areas, thus leading to a more reliable feature selection. The selected features are then fed into the second layer, which employs a classification model trained on the retrieved features. Using cross-validation, the proposed method divides the DNA splice junction dataset into training and test sets, allowing for a thorough examination of the classifier's generalization ability. The ensemble model is trained on various partitions of the training set and tested on the remaining held-out fold. This process is performed for each fold, comprehensively evaluating the classifier's performance. We tested our method using the StatLog DNA dataset. Compared to various machine learning models for DNA splice junction prediction, the proposed GWO+SVM ensemble method achieved an accuracy of 96%. This finding suggests that the proposed ensemble hybrid approach is promising for DNA splice junction classification. The implementation code for the proposed approach is available at https://github.com/EFHamouda/DNA-splice-junction-prediction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11419377 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310698 | PLOS |
Int J Mol Sci
January 2025
School of Life Sciences, Soochow University, Suzhou 215123, China.
Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Chemistry, The RNA Institute, University at Albany, SUNY, 1400 Washington Ave Extension, Albany, NY 12222, USA.
The notion of RNA-based therapeutics has gained wide attractions in both academic and commercial institutions. RNA is a polymer of nucleic acids that has been proven to be impressively versatile, dating to its hypothesized RNA World origins, evidenced by its enzymatic roles in facilitating DNA replication, mRNA decay, and protein synthesis. This is underscored through the activities of riboswitches, spliceosomes, ribosomes, and telomerases.
View Article and Find Full Text PDFBiomedicines
December 2024
Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
: Alternative splicing is essential for the physiological and pathological development of the inner ear. Disruptions in this process can result in both syndromic and non-syndromic forms of hearing loss. DHX38, a DEAH box RNA helicase, is integral to pre-mRNA splicing regulation and plays critical roles in development, cell differentiation, and stem cell maintenance.
View Article and Find Full Text PDFJ Clin Immunol
January 2025
Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
Background: Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease.
View Article and Find Full Text PDFBrain
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!