Unveiling Cu Nanoparticles Formed During Li Deposition in Anode-Free Batteries.

J Phys Chem Lett

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Published: October 2024

Developing high-energy-density Li metal batteries is essential for sustainable progress, necessitating in-depth studies of complex battery reactions. The presence of metallic Cu impurities detrimentally impacts battery performance, leading to issues such as self-discharging and internal soft short-circuit. Nevertheless, their formation mechanism and structural characteristics have not been revealed clearly. Here the formation of single-crystalline Cu nanoparticles during the Li deposition process in anode-free cells was identified by transmission electron microscopy. Through investigation of the chemical state of Cu before and after Li deposition, the formation of Cu NPs was attributed to the reduction of the oxide layers formed on the surface of Cu current collectors. Additionally, it was observed that Cu nanoparticles can be formed inside of deposited Li metal. This work reveals the formation pathway and microstructural characteristics of Cu nanoparticles appearing during Li deposition, underscoring the importance of nanoscale investigations into the underlying battery reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02290DOI Listing

Publication Analysis

Top Keywords

nanoparticles formed
8
battery reactions
8
unveiling nanoparticles
4
deposition
4
formed deposition
4
deposition anode-free
4
anode-free batteries
4
batteries developing
4
developing high-energy-density
4
high-energy-density metal
4

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Among the various types of pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) is the most lethal and aggressive, due to its tendency to metastasize quickly and has a particularly low five-year survival rate. Carbohydrate antigen 19-9 (CA 19-9) is the only biomarker approved by the Food and Drug Administration for PDAC and has been a focal point in diagnostic strategies, but its sensitivity and specificity are not sufficient for early and accurate detection. To address this issue, we introduce a synergistic approach combining CA 19-9 levels with a graphene oxide (GO)-based blood test.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!