Reversible in situ Control over Monolayer Organization.

Chemphyschem

Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA.

Published: January 2025

Cr and Cr ions are shown to mediate the formation, morphology, and organization of arachidic acid (AA) Langmuir-Blodgett (LB) monolayers. This finding, based on cyclic voltammetry (CV), linear sweep voltammetry (LSV) and fluorescence recovery after photobleaching (FRAP) measurements, show that Langmuir monolayer formation depends on subphase pH and metal ion concentration. Following monolayer deposition on indium tin oxide (ITO), the LB monolayer organization can be modified reversibly through control of the Cr oxidation state, which has not been shown before by other monolayers formed with other divalent metal ions. The dynamics and the mobility of a chromophore (perylene) incorporated into the monolayer sense changes in Cr oxidation state-dependent organization of the LB monolayer. Demonstrating reversible changes in monolayer organization provides an opportunity to control chemical and electron access to the interface support.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400646DOI Listing

Publication Analysis

Top Keywords

monolayer organization
12
monolayer
7
organization
5
reversible in situ
4
in situ control
4
control monolayer
4
organization ions
4
ions mediate
4
mediate formation
4
formation morphology
4

Similar Publications

The recent advances in neuroimaging technology allow us to understand how the human brain is wired in vivo and how functional activity is synchronized across multiple regions. Growing evidence shows that the complexity of the functional connectivity is far beyond the widely used mono-layer network. Indeed, the hierarchical processing information among distinct brain regions and across multiple channels requires using a more advanced multilayer model to understand the synchronization across the brain that underlies functional brain networks.

View Article and Find Full Text PDF

Friction is a critical factor in the proper functioning of human organs as well as in the potential development of disease. It is also important for the design of diagnostic and interventional medical devices. Nanoscale surface roughness, viscoelastic or plastic deformations, wear, and lubrication all influence the functions of individual cells.

View Article and Find Full Text PDF

Selective adsorption of Ga(III) from aqueous solutions using magnetic chitosan-based ion-imprinted polymers: Synthesis optimization and mechanistic insights.

Int J Biol Macromol

January 2025

Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Luoyang Industrial Technology Institute, Luoyang 471000, China. Electronic address:

A magnetic chitosan-based ion-imprinted polymer (IIP) with high adsorption capacity, excellent selectivity for Ga(III), easy magnetic separation, and remarkable reusability was synthesized via a simple crosslinking polymerization. The IIP exhibited a Ga(III) adsorption capacity of 434.00 mg/g at pH 4, demonstrating high efficiency for Ga(III) removal from aqueous solutions.

View Article and Find Full Text PDF

Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases.

View Article and Find Full Text PDF

Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!