The transformation of metabolites into amyloidogenic aggregates represent an intriguing dimension in the pathophysiology of metabolic disorders, including alkaptonuria, canavan disease, and isovaleric acidemia. Central to this phenomenon are the metabolites homogentisic acid (HA), N-acetyl aspartic acid (NAA), and isovaleric acid (IVA), which we found, weave an intricate network of self-assembled structures. Leveraging an array of microscopy techniques, we traced the morphological behavior of these assemblies that exhibit concentration and time-dependent morphological transitions from isolated globules to clustered aggregates. MD simulation studies suggest significant role of hydrogen bonding interactions in the aggregation process. While displaying strong amyloidogenic propensity in solution, these aged aggregates were significantly cytotoxic to mouse neural N2a cell lines. In vivo effect in Caenorhabditis elegans (C. elegans) nematode further validated cytotoxicity of aggregates. Our findings provide fresh insights to amyloidogenic nature of HA, NAA, and IVA aggregates and their possible role in associated metabolic disorders such as alkaptonuria, canavan disease and isovaleric acidemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202400109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!