Background: Mechanical ventilation in the intensive care unit (ICU) is a life-saving technique for patients with acute respiratory failure, but is also associated with a high incidence of complications in the injured lung. Currently, there is no widely used monitoring technique to guide the ventilator setting to facilitate a precision medicine approach or to provide a real-time alert for developing adverse pulmonary conditions. Conventional ultrasound has been used as a thoracic bedside technology, but the lack of signal penetration into lung tissue results in images that often contain more information in their artifacts than in the images themselves. Perhaps the greatest obstacle to using traditional ultrasound in the ICU is the need for highly skilled technicians to perform the data collection. In contrast, low-frequency ultrasound (50-500 kHz) has been shown to penetrate the lung, and can detect air trapping in patients with chronic obstructive pulmonary disease (COPD).
Purpose: Here, we present a method of collecting low-frequency ultrasound computed tomographic (USCT) data in vivo on a mechanically ventilated porcine model and computing tomographic reconstructions of airflow during tidal breathing and induced lung injuries. We evaluate the ability of the novel low-frequency USCT system to image regional changes in sound speed in the thorax due to changes in airflow during tidal breathing and induced lung injuries. This represents the first study of low-frequency tomographic ultrasound imaging in vivo and the first to produce tomographic images of ventilatory changes in vivo.
Methods: USCT and computed tomography (CT) scan data were collected alternately on a mechanically ventilated Landrace pig weighing approximately 75 kg during tidal breathing, induced pneumothorax, atelectasis, and pleural effusion. The pneumothorax was induced by injecting air through a 5 mm thick intrathoracic tube inserted in the 8th posterior intercostal space. After removing the air, atelectasis was induced by ventilating the animal with a high concentration of oxygen and low tidal volumes. The pleural effusion was induced by injecting a saline solution through the tube. The USCT data were collected at 125 kHz using the USCT low-frequency ultrasound tomography (LUFT) system on a transducer belt placed around the animal's thorax. Tomographic reconstructions were computed from the USCT data using a regularized refraction-corrected Gauss-Newton-based time-of-flight reconstruction algorithm.
Results: Cyclic changes in computed lung area during tidal breathing were demonstrated to agree with the respiratory rate on the mechanical ventilator. Reconstructed images computed at time steps during the procedure demonstrate regional changes consistent with what would be expected during the induced lung injury. No ground truth was available for images during the procedures since CT scans could only be taken before and after each established lung injury.
Conclusions: In this work, we have demonstrated in the first in vivo study using a mechanically ventilated porcine animal model that low-frequency ultrasound tomography has the ability to image regional changes in sound speed in the thorax corresponding to changes in airflow during tidal breathing and induced lung injury. The results show promise for using low-frequency USCT as a bedside imaging technique in the future for patients with acute respiratory distress syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656285 | PMC |
http://dx.doi.org/10.1002/mp.17421 | DOI Listing |
BMC Vet Res
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).
Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.
Crit Care
January 2025
Unity Health Toronto, Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada.
Background: Predicting complete liberation from mechanical ventilation (MV) is still challenging. Electrical impedance tomography (EIT) offers a non-invasive measure of regional ventilation distribution and could bring additional information.
Research Question: Whether the display of regional ventilation distribution during a Spontaneous Breathing Trial (SBT) could help at predicting early and successful liberation from MV.
BMC Anesthesiol
January 2025
Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, Fujian, 350001, PR China.
Background: Limited information is available regarding the application of lung-protective ventilation strategies during one-lung ventilation (OLV) across mainland China. A nationwide questionnaire survey was conducted to investigate this issue in current clinical practice.
Methods: The survey covered various aspects, including respondent demographics, the establishment and maintenance of OLV, intraoperative monitoring standards, and complications associated with OLV.
J Appl Physiol (1985)
January 2025
School of Sport, Exercise and Rehabilitation Sciences College of Life and Environmental Sciences University of Birmingham Edgbaston, Birmingham, UK.
The respiratory control system exhibits neural plasticity, adjusting future ventilatory responses based on experience. We tested the hypothesis that ventilatory long-term facilitation induced by hypercapnic acute intermittent hypoxia (AIH) at rest enhances subsequent ventilatory responses to steady-state exercise. Fourteen healthy adults (age = 27 ± 5 years; 7 males) participated in the study.
View Article and Find Full Text PDFJ Clin Med
December 2024
Anaesthesiology and Operative Intensive Care, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany.
The induction of general anesthesia leads to the development of atelectasis and redistribution of ventilation to non-dependent lung regions with subsequent impairment of gas exchange. However, it remains unclear how rapidly atelectasis occurs after the induction of anesthesia in obese patients. We therefore investigated the extent of atelectasis formation in obese patients in the first few minutes after the induction of general anesthesia and initiation of mechanical ventilation in the operating room.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!