Real-world data may contain a considerable amount of noisily labeled examples, which usually mislead the training algorithm and result in degraded classification performance on test data. Therefore, Label Noise Learning (LNL) was proposed, of which one popular research trend focused on estimating the critical statistics (e.g., sample mean and sample covariance), to recover the clean data distribution. However, existing methods may suffer from the unreliable sample selection process or can hardly be applied to multi-class cases. Inspired by the centroid estimation theory, we propose Per-Class Statistic Estimation (PCSE), which establishes the quantitative relationship between the clean (first-order and second-order) statistics and the corresponding noisy statistics for every class. This relationship is further utilized to induce a generative classifier for model inference. Unlike existing methods, our approach does not require sample selection from the instance level. Moreover, our PCSE can serve as a general post-processing strategy applicable to various popular networks pre-trained on the noisy dataset for boosting their classification performance. Theoretically, we prove that the estimated statistics converge to their ground-truth values as the sample size increases, even if the label transition matrix is biased. Empirically, we conducted intensive experiments on various binary and multi-class datasets, and the results demonstrate that PCSE achieves more precise statistic estimation as well as higher classification accuracy when compared with state-of-the-art methods in LNL.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2024.3466182DOI Listing

Publication Analysis

Top Keywords

label noise
8
noise learning
8
classification performance
8
existing methods
8
sample selection
8
statistic estimation
8
statistics
5
sample
5
estimating per-class
4
per-class statistics
4

Similar Publications

Hyperspectral Imaging for High Throughput Optical Spectroscopy of pL Droplets.

Anal Chem

January 2025

Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

Droplet-based microfluidics is a powerful tool for high-throughput analysis of liquid samples with significant applications in biomedicine and biochemistry. Nevertheless, extracting content-rich information from single picolitre-sized droplets at high throughputs remains challenging due to the weak signals associated with these small volumes. Overcoming this limitation would be transformative for fields that rely on high-throughput screening, enabling broader multiparametric analysis.

View Article and Find Full Text PDF

The CoWIN Twitter Dataset offers a wide-ranging collection of public opinions on India's COVID-19 vaccination platform CoWIN. The raw dataset has 635,000 tweets that mention "cowin," collected over the period of January to December 2021. The dataset was extracted by employing the Twitter Academic API.

View Article and Find Full Text PDF

Despite its potential for label-free particle diagnostics, holographic microscopy is limited by specialized processing methods that struggle to generalize across diverse settings. We introduce a deep learning architecture leveraging human perception of longitudinal variation of diffracted patterns of particles, which enables highly generalizable analysis of 3D particle information with orders of magnitude improvement in processing speed. Trained with minimal synthetic and real holograms of simple particles, our method demonstrates exceptional performance across various challenging cases, including high particle concentrations, significant noise, and a wide range of particle sizes, complex shapes, and optical properties, exceeding the diversity of training datasets.

View Article and Find Full Text PDF

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.

Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!