Background And Aims: Mixed forest plantations are increasingly recognized for their role in mitigating the impacts of climate change and enhancing ecosystem resilience. Yet, there remains a significant gap in understanding the early-stage dynamics of species trait diversity and interspecies interactions, particularly in pure deciduous mixtures. This study aims to explore the timing and mechanisms by which trait diversity of deciduous species and competitive interactions influence yield, carbon allocation and space occupation in mixed forests, both above and below ground.
Methods: A forest inventory was conducted in planted monocultures, two-species and four-species mixtures of European Acer, Tilia, Carpinus and Quercus, representing a spectrum from acquisitive to conservative tree species. Effects of competition were assessed with linear mixed-effects models at the level of biomass and space acquisition, including leaf, canopy, stem and fine root traits.
Key Results: Early above-ground growth effects were observed 6 years post-planting, with significant biomass accumulation after 8 years, strongly influenced by species composition. Mixtures, especially with acquisitive species, exhibited above-ground overyielding, 1.5-1.9 times higher than monocultures. Fine roots showed substantial overyielding in high-diversity stands. Biomass allocation was species specific and varied markedly by tree size and the level of diversity and between acquisitive Acer and the more conservative species. No root segregation was found.
Conclusions: Our findings underscore the crucial role of species trait diversity in enhancing productivity in mixed deciduous forest plantations. Allometric changes highlight the need to differentiate between (active) acclimatizations and (passive) tree size-related changes, but illustrate major consequences of competitive interactions for the functional relationship between leaves, stem and roots. This study points towards the significant contributions of both above- and below-ground components to overall productivity of planted mixed-species forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687630 | PMC |
http://dx.doi.org/10.1093/aob/mcae150 | DOI Listing |
Hybridisation is a source of genetic diversity, can drive adaptation to new niches and has been found to be a frequent event in lineages harbouring pathogenic fungi. However, little is known about the genomic implications of hybridisation nor its impact on pathogenicity-related traits. A common limitation for addressing these questions is the narrow representativity of sequenced genomes, mostly corresponding to strains isolated from infected patients.
View Article and Find Full Text PDFExperiments have shown that predation-risk effects on prey fitness can be highly contingent on environmental conditions, suggesting a potential difficulty in generalizing risk effects on prey abundance in natural settings. Rather than study the influence of a particular controlled factor, we examine the problem with a novel approach. We examined the influence of risk effects in multiple experiments performed under similar study conditions.
View Article and Find Full Text PDFPeerJ
January 2025
Institute of Science and Environment, University of Saint Joseph, Macao, Macao S.A.R., China.
While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
Phosphorus (P) is an essential yet frequently deficient plant nutrient. Optimizing P distribution and recycling between tissues is vital for improving P utilization efficiency (PUE). Yet, the mechanisms underlying the transport and re-translocation of P within plants remain unclear.
View Article and Find Full Text PDFJ Mol Evol
January 2025
Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!