Comment on "2-methoxyestradiol sensitizes tamoxifen-resistant MCF-7 breast cancer cells via downregulating HIF-1α".

Med Oncol

Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600 077, India.

Published: September 2024

This study investigates the potential of 2-methoxyestradiol (2-ME) to overcome tamoxifen (TAM) resistance in MCF-7 breast cancer cells by downregulating hypoxia-inducible factor 1 alpha (HIF-1α). Through a series of in vitro experiments, the authors demonstrate that combining 2-ME with TAM enhances the cytotoxic effects on resistant cells, increases apoptosis markers, and reduces cholesterol and triglyceride levels. While the findings highlight a promising therapeutic approach, the lack of in vivo or clinical data limits direct clinical application. Future research should focus on validating these results in animal models and exploring long-term efficacy and molecular mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-024-02505-3DOI Listing

Publication Analysis

Top Keywords

mcf-7 breast
8
breast cancer
8
cancer cells
8
cells downregulating
8
comment "2-methoxyestradiol
4
"2-methoxyestradiol sensitizes
4
sensitizes tamoxifen-resistant
4
tamoxifen-resistant mcf-7
4
downregulating hif-1α"
4
hif-1α" study
4

Similar Publications

In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.

View Article and Find Full Text PDF

New thiazole derivative as a potential anticancer and topoisomerase II inhibitor.

Sci Rep

January 2025

Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.

To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7.

View Article and Find Full Text PDF

In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.

View Article and Find Full Text PDF

Monocyte-cancer cell fusion is mediated by phosphatidylserine-CD36 receptor interaction and induced by ionizing radiation.

PLoS One

January 2025

Division of Cell- and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

Emerging evidence suggests that fusion of cancer cells with leucocytes, such as macrophages, plays a significant role in cancer metastasis and results in tumor hybrid cells that acquire resistance to chemo- and radiation therapy. However, the precise mechanisms behind the leukocyte-cancer cell fusion remain unclear. The present in vitro study explores the presence of fusion between the monocyte cell line (THP-1) and the breast cancer cell line (MCF-7) in relation to the expression of CD36 and phosphatidylserine with and without treatment of these cells with ionizing radiation.

View Article and Find Full Text PDF

Thymoquinone (TQ) has shown antitumorigenic effects in breast cancer; however, its detailed impact on cell signaling mechanisms requires further investigation. This study aims to elucidate the molecular mechanisms behind TQ's antiproliferative effects in breast cancer by analyzing proteome-level changes. MCF-7 cells were treated with 15 µM TQ, the inhibitory concentration (IC50), for 48 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!