Bacterial cell wall induced arthritis is an experimental model of chronic erosive synovitis in which arthritis is induced in rats by a single injection of an aqueous suspension of cell wall fragments from selected Gram-positive bacteria. To understand better the Gram-positive bacterial cell wall characteristics necessary for the induction of chronic arthritis we tested the arthritogenicity of five Gram-positive bacteria which were (1) lysozyme resistant and contained a polyrhamnose peptidoglycan side chain moiety, (2) lysozyme resistant, but had little or no rhamnose in the peptidoglycan, polysaccharide, or (3) neither lysozyme resistant, nor contained rhamnose in their peptidoglycan, polysaccharide. All of the lysozyme resistant cell walls tested induced acute arthritis, but only those cell walls which were both lysozyme resistant and contained rhamnose in their polysaccharide side chain were able to induce chronic arthritis. Cell walls which were neither lysozyme resistant nor contained rhamnose were not arthritogenic. These data suggest that both lysozyme resistance and the rhamnose moiety in the peptidoglycan, polysaccharide side chain play an important role in the induction of chronic arthritis by Gram-positive bacterial cell walls in aqueous suspension.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00541517DOI Listing

Publication Analysis

Top Keywords

lysozyme resistant
24
bacterial cell
16
cell wall
16
chronic arthritis
16
resistant contained
16
cell walls
16
induction chronic
12
side chain
12
peptidoglycan polysaccharide
12
contained rhamnose
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!