Background: B-cell‑specific Moloney MLV insertion site-1(Bmi-1)is a crucial osteopenic target molecule. The aim of this study is to explore the effects of Bmi-1 on alveolar bone resorption and the underlying mechanisms in vitro and vivo.
Methods: A Bmi-1-knockout (Bmi-1) mouse model was used to investigate the effect of Bmi-1 on alveolar bone metabolism, with micro-computed tomography imaging, histology, and immunohistochemistry staining. Furthermore, we utilized a ligature-induced experimental periodontitis model to examine the impact of Bmi-1-knockdown (Bmi-1) on inflammatory alveolar bone resorption. Finally, we stimulated human periodontal ligament stem cells (hPDLSCs) with lipopolysaccharide (LPS) to explore the potential mechanism of Bmi-1 overexpression in the process of osteogenesis.
Results: Compared with wild-type mice, Bmi-1 mice demonstrated more alveolar bone resorption by inhibiting osteogenesis, which was characterized by decreases in Runt-related transcription factor 2 and type 1 collagen formation. In addition, Bmi-1 mice had lower levels of autophagy markers such as Parkin and LC3, but higher levels of inflammation-related factors such as interleukin (IL)-6 and IL-1β in periodontal tissues. In addition, Bmi-1-knockdown aggravated ligature-induced alveolar bone loss. Under in vitro inflammatory conditions, Bmi-1 overexpression stimulated osteoblast differentiation and inhibited the production of inflammatory factors, as well as the autophagy and apoptosis in hPDLSCs stimulated with LPS. When 3-methyladenine (3-MA), an autophagy inhibitor, was added, the osteogenic effect of Bmi-1 was further enhanced.
Conclusions: Bmi-1 alleviates alveolar bone resorption by regulating autophagy, indicating that it could be a potential target for periodontitis prevention and treatment.
Plain Language Summary: Periodontitis is a chronic inflammatory disease, which leads to progressive destruction of periodontal tissues, manifested as periodontal pocket formation, loss of periodontal attachment and alveolar bone resorption. Currently, there is a lack of effective treatments to regenerate damaged periodontal tissues. Therefore, it is of great clinical significance to explore new mechanisms of periodontitis and effective intervention targets. B-cell‑specific Moloney MLV insertion site-1 (Bmi-1) is involved in the regulation of the cell cycle, DNA damage repair, autophagy, bone metabolism, tumor, and other physiopathological processes. Autophagy, as an important mechanism of intracellular self-regulation, plays an indispensable role in the destruction and repair of periodontal tissues. The aim of this study was to investigate the role of Bmi-1 on periodontal tissues and its intrinsic mechanism. The results revealed that Bmi-1 regulates autophagy to protect periodontal tissues, suggesting that it may be a potential target for the prevention and treatment of periodontitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/JPER.23-0796 | DOI Listing |
Lasers Med Sci
January 2025
Manav Rachna Dental College, Manav Rachna International Institute of Research and Studies, Aravali Hills, India.
This systematic review and meta-analysis aimed to compare the effect of photobiomodulation (PBM) therapy on implant stability and crestal bone loss placed in healed sites. The present systematic review and meta-analysis were conducted according to PRISMA (The Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Two investigators carried out the electronic search of Pubmed, Google Scholar, and Ebscohost for published literature from 2012 till March 2024.
View Article and Find Full Text PDFOral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
Purpose: Coronectomy is a valuable treatment proven safe for non-pathological mandibular third molars with an increased risk of inferior alveolar nerve injury. Coronectomy may also be useful for mandibular third molars with dentigerous cysts and caries, but this is not commonly performed due to the lack of well-designed, evidence-based studies. Here, we aim to investigate the safety of coronectomy for mandibular third molars with caries and dentigerous cysts.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Center for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK.
Cranio-maxillofacial bone reconstruction, especially for large defects, remains challenging. Synthetic biomimetic materials are emerging as alternatives to autogenous grafts. Tissue engineering aims to create natural tissue-mimicking materials, with calcium phosphate-based scaffolds showing promise for bone regeneration applications.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70121 Bari, Italy.
Aim: This review aims to explore the clinical applications, biological mechanisms, and potential benefits of concentrated growth factors (CGFs), autologous materials, and xenografts in bone regeneration, particularly in dental treatments such as alveolar ridge preservation, mandibular osteonecrosis, and peri-implantitis.
Materials And Methods: A systematic literature search was conducted using databases like PubMed, Scopus, and Web of Science, with keywords such as "bone regeneration" and "CGF" from 2014 to 2024. Only English-language clinical studies involving human subjects were included.
J Funct Biomater
December 2024
Department and Institute of Oral Surgery, Wroclaw Medical University, Krakowska 26 Street, 50-425 Wrocław, Poland.
Background: The impact of tongue protrusion forces on the formation of malocclusions is well documented in academic literature. In the case of bone dehiscence of the buccal wall in front of the lower frontal teeth, this process may be even more pronounced. Augmentation with 3D customized allogenic bone blocks (CABB) has been proposed as a potential solution for treating such defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!