Glass nano/micron pipette-based ion current rectification sensing technology for single cell/ analysis.

Analyst

The Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province and School of Electrical Engineering, University of South China, Hengyang 421001, P. R. China.

Published: October 2024

Glass nano/micron pipettes, owing to their easy preparation, unique confined space at the tip, and modifiable inner surface of the tip, can capture the ion current signal caused by a single entity, making them widely used in the construction of highly sensitive and highly selective electrochemical sensors for single entity analysis. Compared with other solid-state nanopores, their conical nano-tip causes less damage to cells when inserted into them, thereby becoming a powerful tool for the analysis of important substances in cells. However, glass nanopipettes have some shortcomings, such as poor mechanical properties, difficulty in precise preparation (aperture less than 50 nm), and easy blockage during complex real sample detection, limiting their practicability. Therefore, in recent years, researchers have conducted a series of studies on glass micropipettes. Ionic current rectification technology is a novel electrochemical analysis technique. Compared with traditional electrochemical analysis methods, it does not generate redox products during the detection process; therefore, it can not only be used for the determination of non-electrochemically active substances, but also causes less damage to the cell/living body analysis, becoming a powerful analysis technology for the analysis of cells/ in recent years. In this review, we summarize the preparation and functionalization of glass nano/micron pipettes and introduce the sensing mechanisms of two electrochemical sensing platforms constructed using glass nano/micron pipette-based ion current rectification sensing technology as well as their applications in single cell/ analysis, existing problems, and future prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an00899eDOI Listing

Publication Analysis

Top Keywords

glass nano/micron
16
ion current
12
current rectification
12
analysis
9
nano/micron pipette-based
8
pipette-based ion
8
rectification sensing
8
sensing technology
8
single cell/
8
cell/ analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!