The meta-learning framework proposed by Binz et al. would gain significantly from the inclusion of affective and homeostatic elements, currently neglected in their work. These components are crucial as cognition as we know it is profoundly influenced by affective states, which arise as intricate forms of homeostatic regulation in living bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0140525X24000098 | DOI Listing |
PLoS One
January 2025
College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang, China.
The network intrusion detection system (NIDS) plays a critical role in maintaining network security. However, traditional NIDS relies on a large volume of samples for training, which exhibits insufficient adaptability in rapidly changing network environments and complex attack methods, especially when facing novel and rare attacks. As attack strategies evolve, there is often a lack of sufficient samples to train models, making it difficult for traditional methods to respond quickly and effectively to new threats.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
Predicting protein-protein interaction (PPI) binding affinities in unseen protein complex clusters is essential for elucidating complex protein interactions and for the targeted screening of peptide- or protein-based drugs. We introduce MCGLPPI++, a meta-learning framework designed to improve the adaptability of pretrained geometric models in such scenarios. To effectively boost the meta-learning optimization by injecting prior intersample distribution knowledge, three specially designed training sample cluster splitting patterns based on protein interaction interfaces are introduced.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Information, Liaoning University, Shenyang 110036, China.
Rolling bearings play a crucial role in industrial equipment, and their failure is highly likely to cause a series of serious consequences. Traditional deep learning-based bearing fault diagnosis algorithms rely on large amounts of training data; training and inference processes consume significant computational resources. Thus, developing a lightweight and suitable fault diagnosis algorithm for small samples is particularly crucial.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.
Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!