Efficient photoelectrochemical (PEC) water splitting systems in photoelectrodes are primarily challenged by electron-hole pair recombination. Constructing a heterostructure is an effective strategy to overcome this issue and to enhance PEC efficiency. In this study, we integrated NiMoO, known for its proper electrocatalytic conductivity, into a BiVO/Sn-doped WO heterojunction using solution-based hydrothermal and spin-coating methods, forming an innovative double heterojunction concept. The resulting NiMoO/BiVO/Sn:WO triple-layer heterojunction photoanode exhibits a photocurrent density of 2.06 mA cm in a potassium borate buffer (KBi) electrolyte at 1.23 V vs RHE, outperforming the bilayer BiVO/Sn:WO heterojunction (1.45 mA cm) and Sn:WO photoanodes (0.55 mA cm) by approximately 1.4 and 3.7 times, respectively. Remarkably, the NiMoO/BiVO/Sn:WO double heterojunction photoanode exhibits notable stability, showing only an approximate 30% reduction in initial photocurrent density after 10 h of measurement in the KBi electrolyte without a hole scavenger. This stability is attributed to the excellent corrosion resistance of the thin NiMoO layer, effectively protecting the bilayer BiVO/Sn:WO heterojunction photoanode from photocorrosion. Our findings show how this novel double heterojunction, established through simple and cost-effective solution-based methods, offers a promising approach to enhancing PEC water splitting applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c11095 | DOI Listing |
Environ Res
January 2025
School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, PR China.
Currently, to deal with the increasingly severe energy crisis and environmental consequences, photocatalytic technology is considered as a promise solution, and the construction of Z-scheme heterostructures are important strategies to maximize the utilization of solar energy and improve photocatalytic performance. Herein, a novel full spectrum-responsive Z-scheme Bi-BiVO-BiTiO heterojunction was constructed by a facile hydrothermal method without any templates or surfactants. A series of detailed analyses revealed that the novel Bi-BiVO-BiTiO heterojunction catalyst were prepared successfully.
View Article and Find Full Text PDFSci Rep
January 2025
College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, Xinjiang, China.
We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.
View Article and Find Full Text PDFDalton Trans
January 2025
National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
The unique benefits of nickel-aluminium layered double hydroxide (Ni-Al LDH)-based heterojunctions, including large surface area, tunable bandgap and morphology, abundant reaction sites, and high activity, selectivity, and photostability, make them extremely promising for photocatalytic applications. Given the importance and benefits of Ni-Al LDH-based heterojunctions in photocatalysis, it is necessary to provide a summary of Ni-Al LDH-based heterojunctions for photocatalytic applications. Hence, in this review, we thoroughly described the material design for Ni-Al LDH-based heterojunctions, along with their recent developments in various photocatalytic applications, , H evolution, CO reduction, and pollutant removal.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Institutskaya 3, 630090 Novosibirsk, Russia.
We developed a technique allowing the direct observation of photoinduced charge-transfer states (CTSs)-the weakly coupled electron-hole pairs preceding the completely separated charges in organic photovoltaic (OPV) blends. Quadrature detection of the electron spin echo (ESE) signal enables the observation of an out-of-phase ESE signal of CTS. The out-of-phase Electron-Electron Double Resonance (ELDOR) allows measuring electron-hole distance distributions within CTS and its temporal evolution in the microsecond range.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan. Electronic address:
Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!