A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of macrotrabecular-massive hepatocellular carcinoma through multiphasic CT-based representation learning method. | LitMetric

Background: Macrotrabecular-massive hepatocellular carcinoma (MTM-HCC) represents an aggressive subtype of HCC and is associated with poor survival.

Purpose: To investigate the performance of a representation learning-based feature fusion strategy that employs a multiphase contrast-enhanced CT (mpCECT)-based latent feature fusion (MCLFF) model for MTM-HCC identification.

Methods: A total of 206 patients (54 MTM HCC, 152 non-MTM HCC) who underwent preoperative mpCECT with surgically confirmed HCC between July 2017 and December 2022 were retrospectively included from two medical centers. Multiphasic radiomics features were extracted from manually delineated volume of interest (VOI) of all lesions on each mpCECT phase. Representation learning based MCLFF model was built to fuse multiphasic features for MTM HCC prediction, and compared with competing models using other fusion methods. Conventional imaging features and clinical factors were also evaluated and analyzed. Prediction performance was validated by ROC analysis and statistical comparisons on an internal validation and an external testing dataset.

Results: Fusion of radiomics features from the arterial phase (AP) and portal venous phase (PAP) using MCLFF demonstrated superior performance in MTM HCC prediction, with a higher AUC of 0.857 compared with all competing models in the internal validation set. Integration of multiple radiological or clinical features further improved the overall performance, with the highest AUCs of 0.857 and 0.836 respectively achieved in the internal validation and external testing set.

Conclusions: Multiphasic radiomics features of AP and PVP fused by the MCLFF have demonstrated substantial potential in the accurate prediction of MTM HCC. Clinical factors and Radiological features in mpCECT contribute incremental values to the developed MCLFF strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17401DOI Listing

Publication Analysis

Top Keywords

mtm hcc
16
radiomics features
12
internal validation
12
macrotrabecular-massive hepatocellular
8
hepatocellular carcinoma
8
representation learning
8
feature fusion
8
mclff model
8
multiphasic radiomics
8
hcc prediction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!