AI Article Synopsis

  • Cytokines and growth factors are important signaling molecules that influence many biological processes and are crucial for both research and clinical applications.
  • Researchers need to produce these proteins, including their variants due to genetic polymorphisms, in functional forms for studies.
  • The choice of expression systems, particularly eukaryotic systems like HEK cells, is vital as they affect the functionality and post-translational modifications of the proteins being studied.

Article Abstract

Cytokines and growth factors are signaling molecules that regulate a variety of biological processes. Understanding their role is essential for basic research and clinical utilization. Thus, cytokines and growth factors are widely used throughout research labs in a significant number of applications. Additionally, genetic polymorphisms result in variant forms of cytokines and growth factors, which can alter their function. Becoming more common, researchers will need to generate these important proteins and their variants themselves in functional forms for activity studies. The expression systems used to generate these proteins can have a major impact on their function. In some instances, post-translational modifications are needed to produce a functionally active protein, which can only be conducted using eukaryotic expression systems. Ideally, for functional relevance, a human expression system should be used for human-related research and applications. Most human cell-based expression systems primarily use HEK (Human Embryonic Kidney) cells; however, relying on just one cell type can lead to several issues, considering the variety of proteins derived from various cell sources. Here, we provide a protocol to effectively and efficiently generate functional recombinant proteins, taking into consideration the diverse range of proteins from different cell types throughout the human body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417903PMC
http://dx.doi.org/10.3390/mps7050072DOI Listing

Publication Analysis

Top Keywords

cytokines growth
16
growth factors
16
expression systems
12
generate proteins
8
proteins
5
generating cytokines
4
growth
4
factors
4
functional
4
factors functional
4

Similar Publications

Growth differentiation factor 15, GDF15, and glucagon-like peptide-1 (GLP-1) analogues act through brainstem neurons that co-localise their receptors, GDNF-family receptor α-like (GFRAL) and GLP1R, to reduce food intake and body weight. However, their use as clinical treatments is partially hampered since both can also induce sickness-like behaviours, including aversion, that are mediated through a well-characterised pathway via the exterolateral parabrachial nucleus. Here, in mice, we describe a separate pathway downstream of GFRAL/GLP1R neurons that involves a distinct population of brain-derived neurotrophic factor (BDNF) cells in the medial nucleus of the tractus solitarius.

View Article and Find Full Text PDF

Neurodegeneration is characteristically multifaceted, with limited therapeutic options. One of the chief pathophysiological mechanisms driving these conditions is neuroinflammation, prompting increasing clinical interest in immunomodulatory agents. Growth differentiation factor 15 (GDF15; previously also called macrophage inhibitory cytokine-1 or MIC-1), an anti-inflammatory cytokine with established neurotrophic properties, has emerged as a promising therapeutic agent in recent decades.

View Article and Find Full Text PDF

Background: Stress can cause an increase in proinflammatory cytokines, IL-6, which plays a role in the inflammatory response and causes changes in the placenta, causing a low risk of the fetus being born. Giving nanocurcumin, which functions as an anti-inflammatory and antioxidant, is expected to reduce cortisol levels which increase during pregnancy.

Aim: This study aims to determine the effect of stress during pregnancy on pregnant mice, namely IL-6 expression and fetal body weight.

View Article and Find Full Text PDF

IL-37 attenuated HPV induced inflammation of oral epithelial cells via inhibiting PI3K/AKT/mTOR.

Virol J

December 2024

Department of Stomatology, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding, 071000, Hebei, People's Republic of China.

Human papillomavirus (HPV) is the most prevalent sexually transmitted infection globally, with significant implications for various anogenital cancers, such as vulval, vaginal, anal, penile, head and neck cancers. HPV infections have been linked to the induction of inflammation. In contrast, Interleukin-37 (IL-37) is recognized as an anti-inflammatory cytokine.

View Article and Find Full Text PDF

Nuclear receptor 4A1 (NR4A1) is a gene that increases the likelihood of chronic kidney disease (CKD) and contributes to its development. Previous research has shown that the SAM pointed domain containing Ets transformation-specific transcription factor (SPDEF) can activate NR4A1, but its mechanism of action in renal fibrosis is not yet clear. In this study, we used adenovirus to create a mouse kidney model with a specific knockdown of NR4A1 gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!