Product design and attractiveness are pivotal factors that determine people's positive reactions when viewing a product and may eventually affect their purchasing choices. Comprehending how people assess product design is crucial. Various studies have explored the link between product attractiveness and consumer behavior, but these were predominantly behavioral studies that offered limited insight into the neural processes underlying perceptions of product attractiveness. Gaining a deeper understanding of these neural mechanisms is valuable, as it enables the formulation of more objective design guidelines based on brain activity, enhancing product appeal and, ultimately, spurring consumer purchases. In our study, we sought to (1) elucidate the neural network engaged when individuals evaluate highly attractive product images, (2) delineate the neural network activated during the evaluation of less attractive product images, and (3) contrast the differences in neural networks between evaluations of highly and less attractive images. We utilized fMRI to investigate the neural activation patterns elicited by viewing product images of varying attractiveness levels. The results indicated distinct neural activations in response to the two types of attractive images. Highly attractive product images elicited activity in the anterior cingulate cortex (ACC) and the occipital pole, whereas less attractive product images stimulated the insula and the inferior frontal gyrus (IFG). The findings of this project provide some of the first insights of its kind and valuable insights for future product design, suggesting that incorporating more positive and rewarding elements could enhance product appeal. This research elucidates the neural correlates of people's responses to product attractiveness, revealing that highly attractive designs activate reward-related brain regions, while less attractive designs engage areas associated with emotional processing. These findings offer a neuroscientific basis for further studies on developing design strategies that align with consumers' innate preferences, potentially transforming product design and marketing practices. By leveraging this knowledge, designers can craft products that not only meet functional needs but also resonate more deeply on an esthetic level, thereby enhancing consumer engagement and purchase likelihood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417844PMC
http://dx.doi.org/10.3390/neurolint16050069DOI Listing

Publication Analysis

Top Keywords

product images
20
product design
16
highly attractive
16
attractive product
16
product
15
product attractiveness
12
viewing product
8
neural
8
product appeal
8
neural network
8

Similar Publications

Purpose: To assess and compare the diagnostic efficiency of histogram analysis of monochromatic and iodine images derived from spectral CT in predicting Ki-67 expression in gastric gastrointestinal stromal tumors (gGIST).

Methods: Sixty-five patients with gGIST who underwent spectral CT were divided into a low-level Ki-67 expression group (LEG, Ki-67 < 10%, n = 33) and a high-level Ki-67 expression group (HEG, Ki-67 ≥ 10%, n = 32). Conventional CT features were extracted and compared.

View Article and Find Full Text PDF

Superior persistence of ustekinumab compared to anti-TNF in vedolizumab-experienced inflammatory bowel diseases patients: a real-world cohort study.

BMC Gastroenterol

December 2024

Department of Gastroenterology and Hepatology, Linkou Branch, Chang Gung Memorial Hospital, 5, Fu-Hsin Street, Guei-Shan District, Taoyuan, 33305, Taiwan.

Background/aims: The increasing use of biologic therapies for moderate to severe inflammatory bowel disease (IBD) highlights the importance of optimal treatment sequencing, particularly after vedolizumab (VDZ) exposure. Studies comparing the effectiveness of ustekinumab (UST) and antitumor necrosis factor (anti-TNF) agents post-VDZ are limited.

Methods: This retrospective study analyzed VDZ-experienced IBD patients treated with UST or anti-TNF (adalimumab and infliximab) from May 2019 to January 2024.

View Article and Find Full Text PDF

High altitudes, deeper insights: multicenter cardiovascular magnetic resonance study on hypertrophic cardiomyopathy.

Eur Radiol

December 2024

The First Clinical Medical College of Lanzhou University, Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China.

Objectives: Altitude is a known factor in cardiovascular disease, but its impact on hypertrophic cardiomyopathy (HCM) patients remains unclear. This study aimed to determine whether living at high altitudes affects the extent of late gadolinium enhancement (LGE) and left ventricular (LV) strain in HCM patients.

Methods: This retrospective cross-sectional study was conducted across four hospitals located at different altitudes in China.

View Article and Find Full Text PDF

Objectives: We report our experience implementing an algorithm for the detection of large vessel occlusion (LVO) for suspected stroke in the emergency setting, including its performance, and offer an explanation as to why it was poorly received by radiologists.

Materials And Methods: An algorithm was deployed in the emergency room at a single tertiary care hospital for the detection of LVO on CT angiography (CTA) between September 1st-27th, 2021. A retrospective analysis of the algorithm's accuracy was performed.

View Article and Find Full Text PDF

Portable astronomical observation system based on large-aperture concentric-ring metalens.

Light Sci Appl

January 2025

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtzplatz 1, Eggenstein-Leopoldshafen, 76344, Germany.

The core advantage of metalenses over traditional bulky lenses lies in their thin volume and lightweight. Nevertheless, as the application scenarios of metalenses extend to the macro-scale optical imaging field, a contradiction arises between the increasing demand for large-aperture metalenses and the synchronous rise in design and processing costs. In response to the application requirements of metalens with diameter reaching the order of 10λ or even 10λ, this paper proposes a novel design method for fixed-height concentric-ring metalenses, wherein, under the constraints of the processing technology, a subwavelength 2D building unit library is constructed based on different topological structures, and the overall cross-section of the metalens is assembled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!