This study introduces the intelligent learning engine (ILE) optimization technology, a novel approach designed to revolutionize screening processes in bioinformatics, cheminformatics, and a range of other scientific fields. By focusing on the efficient and precise identification of candidates with desirable characteristics, the ILE technology marks a significant leap forward in addressing the complexities of candidate selection in drug discovery, protein classification, and beyond. The study's primary objective is to address the challenges associated with optimizing screening processes to efficiently select candidates across various fields, including drug discovery and protein classification. The methodology employed involves a detailed algorithmic process that includes dataset preparation, encoding of protein sequences, sensor nucleation, and optimization, culminating in the empirical evaluation of molecular activity indexing, homology-based modeling, and classification of proteins such as G-protein-coupled receptors. This process showcases the method's success in multiple sequence alignment, protein identification, and classification. Key results demonstrate the ILE's superior accuracy in protein classification and virtual high-throughput screening, with a notable breakthrough in drug development for assessing drug-induced long QT syndrome risks through hERG potassium channel interaction analysis. The technology showcased exceptional results in the formulation and evaluation of novel cancer drug candidates, highlighting its potential for significant advancements in pharmaceutical innovations. The findings underline the ILE optimization technology as a transformative tool in screening processes due to its proven effectiveness and broad applicability across various domains. This breakthrough contributes substantially to the fields of systems optimization and holds promise for diverse applications, enhancing the process of selecting candidate molecules with target properties and advancing drug discovery, protein classification, and modeling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417716 | PMC |
http://dx.doi.org/10.3390/biotech13030033 | DOI Listing |
Mol Divers
January 2025
Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases Ministry of Education, Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
Identifying drug-target binding affinity (DTA) plays a critical role in early-stage drug discovery. Despite the availability of various existing methods, there are still two limitations. Firstly, sequence-based methods often extract features from fixed length protein sequences, requiring truncation or padding, which can result in information loss or the introduction of unwanted noise.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Emodin, as a natural active ingredient, has shown great application potential in the fields of medicine, food and cosmetics due to its unique pharmacological effects, such as anti-inflammatory, antioxidant, anti-cancer, etc. In recent years, with the development of science and technology and the increase of people's demand for natural medicine, emodin research has been paid more and more attention by the global scientific research community. The bibliometric analysis of emodin and the construction of knowledge map are still blank.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.
Proteolysis-targeting chimeras (PROTACs) represent a transformative advancement in drug discovery, offering a method to degrade specific intracellular proteins. Unlike traditional inhibitors, PROTACs are bifunctional molecules that target proteins for elimination, enabling the potential treatment of previously "undruggable" proteins. This concept, pioneered by Crews and his team, introduced the use of small molecules to link a target protein to an E3 ubiquitin ligase, inducing ubiquitination and subsequent degradation of the target protein.
View Article and Find Full Text PDFCells
January 2025
Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.
View Article and Find Full Text PDFCells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!