Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rise in biological therapies has revolutionized oncology, with immunotherapy leading the charge through breakthroughs such as CAR-T cell therapy for melanoma and B-ALL. Modified bispecific antibodies and CAR-T cells are being developed to enhance their effectiveness further. However, CAR-T cell therapy currently relies on a costly ex vivo manufacturing process, necessitating alternative strategies to overcome this bottleneck. Targeted in vivo viral transduction offers a promising avenue but remains under-optimized. Additionally, novel approaches are emerging, such as in vivo vaccine boosting of CAR-T cells to strengthen the immune response against tumors, and dendritic cell-based vaccines are under investigation. Beyond CAR-T cells, mRNA therapeutics represent another promising avenue. Targeted delivery of DNA/RNA using lipid nanoparticles (LNPs) shows potential, as LNPs can be directed to T cells. Moreover, CRISPR editing has demonstrated the ability to precisely edit the genome, enhancing the effector function and persistence of synthetic T cells. Enveloped delivery vehicles packaging Cas9 directed to modified T cells offer a virus-free method for safe and effective molecule release. While this platform still relies on ex vivo transduction, using cells from healthy donors or induced pluripotent stem cells can reduce costs, simplify manufacturing, and expand treatment to patients with low-quality T cells. The use of allogeneic CAR-T cells in cancer has gained attraction for its potential to lower costs and broaden accessibility. This review emphasizes critical strategies for improving the selectivity and efficacy of immunotherapies, paving the way for a more targeted and successful fight against cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417735 | PMC |
http://dx.doi.org/10.3390/medsci12030043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!