Fragment quantum embedding using the Householder transformation: A multi-state extension based on ensembles.

J Chem Phys

Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.

Published: September 2024

In recent studies by Yalouz et al. [J. Chem. Phys. 157, 214112 (2022)] and Sekaran et al. [Phys. Rev. B 104, 035121 (2021) and Computation 10, 45 (2022)], density matrix embedding theory (DMET) has been reformulated through the use of the Householder transformation as a novel tool to embed a fragment within extended systems. The transformation was applied to a reference non-interacting one-electron reduced density matrix to construct fragments' bath orbitals, which are crucial for subsequent ground state calculations. In the present work, we expand upon these previous developments and extend the utilization of the Householder transformation to the description of multiple electronic states, including ground and excited states. Based on an ensemble noninteracting density matrix, we demonstrate the feasibility of achieving exact fragment embedding through successive Householder transformations, resulting in a larger set of bath orbitals. We analytically prove that the number of additional bath orbitals scales directly with the number of fractionally occupied natural orbitals in the reference ensemble density matrix. A connection with the regular DMET bath construction is also made. Then, we illustrate the use of this ensemble embedding tool in single-shot DMET calculations to describe both ground and first excited states in a Hubbard lattice model and an ab initio hydrogen system. Finally, we discuss avenues for enhancing ensemble embedding through self-consistency and explore potential future directions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0229787DOI Listing

Publication Analysis

Top Keywords

density matrix
16
householder transformation
12
bath orbitals
12
ground excited
8
excited states
8
ensemble embedding
8
embedding
5
fragment quantum
4
quantum embedding
4
householder
4

Similar Publications

A mouse coccygeal intervertebral disc degeneration model with tail-looping constructed using a suturing method.

Animal Model Exp Med

January 2025

Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China.

Backgroud: Intervertebral disc degeneration (IDD) is one of the common degenerative diseases. Due to ethical constraints, it is difficult to obtain sufficient research on humans, so the use of an animal model of IDD is very important to clarify the pathogenesis and treatment mechanism of the disease.

Methods: In this study, thirty 2-month-old mice were selected for operation to establish a coccygeal IDD model.

View Article and Find Full Text PDF

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

Organic-inorganic hybrid ferroelectric compounds of the halobismuthate family have emerged as a focal point of research owing to their reduced toxicity and distinctive optical characteristics. This study presents a novel ammonium hybrid perovskite, [BPMBDMA]·[Bi2Br9], which exhibits both ferro- and piezoelectric properties and crystallizes in the polar noncentrosymmetric 2 space group. The nonlinear optical (NLO) activity of [BPMBDMA]·[Bi2Br9] was corroborated through second harmonic generation measurements evidencing its noncentrosymmetric structure, which was further substantiated by piezoresponse force microscopy analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!