Background: In recent decades the demand for freshwater has drastically increased as a consequence of population growth, economic development, climate change and pollution. Therefore, any strategy for wastewater treatment can play a role in alleviating the pressure on freshwater sources.

Results: In the present study an autochthonous microalgal pool (MP), isolated from a constructed wetland, was proposed as an alternative to the secondary treatment of an urban wastewater treatment system. The MP removal efficacy was compared to those obtained using Chlorella vulgaris and Scenedesmus quadricauda, against E. coli. Results exhibited a comparable removal efficacy and after 2 days, in samples inoculated with E. coli at lower density, S. quadricauda and C. vulgaris induced a decrease of 2.0 units Log and the autochthonous MP of 1.8 units Log, whereas in samples with E. coli at higher density the bacteria were reduced 2.8, 3.4 and 2.0 units Log by S. quadricauda, C. vulgaris and the autochthonous MP, respectively. Moreover, the identification of microalgal strains isolated from the MP revealed the presence of Klebsormidium sp. K39, C. vulgaris, Tetradesmus obliquus and S. quadricauda. Although the MP composition remained quite constant, at the end of the treatment, a different distribution among the microalgal species was observed with Klebsormidium sp. K39 found as dominant.

Conclusion: The microalgal-based wastewater treatment appears as a valuable alternative, although further investigations, based on 'omics' approaches, could be applied to better explore any fluctuation within the MP species composition in an in situ trial. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632170PMC
http://dx.doi.org/10.1002/jsfa.13918DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
16
klebsormidium k39
12
microalgal pool
8
urban wastewater
8
removal efficacy
8
quadricauda vulgaris
8
20 units log
8
treatment
6
indigenous microalgal
4
pool klebsormidium
4

Similar Publications

This study synthesises expanded graphite (EG) from graphitised carbon from waste polyethylene terephthalate (PET) bottles. The adsorbent material was characterised using FTIR, XRF, XRD, SEM, Raman Spectroscopy, and BET surface area analysis. The synthesised EG defluorinated wastewater, utilising response surface methodology (RSM) for experimental design and optimisation.

View Article and Find Full Text PDF

Using different configurations of -planted constructed wetland-microbial fuel cells to remove Cr (Ⅵ) and p-chlorophenol and generate electricity.

Environ Technol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, People's Republic of China.

P-chlorophenol (4-CP) and hexavalent chromium (Cr (VI)) are predominant contaminants in industrial effluents, eliciting substantial environmental and human health concerns. As a strong oxidant, Cr (Ⅵ) has the potential to facilitate the removal of 4-CP. However, the specific removal effect remains unclear.

View Article and Find Full Text PDF

Microalgal-based urea wastewater treatment with p-Hydroxybenzoic acid enhances resource recovery and mitigates biological risks from Bisphenol A.

Water Res

January 2025

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:

Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.

View Article and Find Full Text PDF

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF

Acetochlor degradation in anaerobic microcosms with hyporheic sediments: Insights from biogeochemical data, transformation products, and isotope analysis.

Water Res

December 2024

Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:

Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!