Extracellular vesicles (EVs) are cell-secreted nanoscale vesicles with important roles in cell-cell communication and drug delivery. Although EVs pose a promising alternative to cell-based therapy, targeted delivery is lacking. Their surface is often modified to endow them with active targeting molecules to enable specific cell uptake and tailor EV biodistribution. A dominant paradigm has been to evaluate the EV surface functionalization using bulk analysis assays, such as western blotting and bead-based flow cytometry. Yet, the heterogeneity of EVs is now recognized as a major bottleneck for their clinical translation. Here, we engineer the EV surface at the single-vesicle level. We applied orthogonal platforms with single vesicle resolution to determine and optimize the efficiency of conjugating the myelin-targeting aptamer LJM-3064 to single EVs (Apt-EVs). The aptamers were conjugated using either lipid insertion or covalent protein modification, followed by an assessment of single-EV integrity and stability. We observed unique aptamer conjugation to single EVs that depends on EV size. Our study underscores the importance of single vesicle analysis for engineering EVs and provides a novel single-EV-based framework for modifying EV surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr01603c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!