Atherosclerosis (AS) is a chronic vascular disease associated with lipid accumulation. Understanding the molecular mechanisms of AS is essential. Ubiquitin-specific protease 7 (USP7) is a deubiquitination enzyme involved in various cellular processes, including lipid metabolism. In this study, we aimed to elucidate the role of USP7 in AS progression and its underlying mechanism using ApoE-deficient mice. We found that USP7 ablation improved the morphological characteristics of AS in these mice. USP7 knockdown reduced inflammation, evidenced by decreases in inflammatory markers IL-6, TNF-α, and IL-1β by 35, 40, and 38%, respectively ( < 0.01). Additionally, USP7 depletion reduced oxidative stress, indicated by a 30% reduction in malondialdehyde levels and increases in superoxide dismutase and glutathione peroxidase levels by 25 and 28%, respectively ( < 0.01). Moreover, USP7 knockdown blocked lipid accumulation in aortic tissue cells. Mechanistically, USP7 knockdown inhibited enhancer of Zeste Homolog 2 (EZH2) expression, thereby suppressing AS progression. In conclusion, USP7 depletion alleviated AS progression in ApoE-deficient mice by targeting EZH2 expression. USP7 may serve as a therapeutic target for AS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416069 | PMC |
http://dx.doi.org/10.1515/biol-2022-0929 | DOI Listing |
Exp Cell Res
January 2025
Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China. Electronic address:
SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037 Marburg, Germany.
A possible involvement of immune- and vasoregulatory PACAP signaling at the PAC1 receptor in atherogenesis and plaque-associated vascular inflammation has been suggested. Therefore, we tested the PAC1 receptor agonist Maxadilan and the PAC1 selective antagonist M65 on plaque development and lumen stenosis in the ApoE atherosclerosis model for possible effects on atherogenesis. Adult male ApoE mice were fed a cholesterol-enriched diet (CED) or standard chow (SC) treated with Maxadilan, M65 or Sham.
View Article and Find Full Text PDFBiomedicines
November 2024
REMAR Group, Germans Trias i Pujol Research Institute (IGTP), Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Spain.
Variant 3'UTRs provide mRNAs with different binding sites for miRNAs or RNA-binding proteins (RBPs) allowing the establishment of new regulatory environments. Regulation of 3'UTR length impacts on the control of gene expression by regulating accessibility of miRNAs or RBPs to homologous sequences in mRNAs. Studying the dynamics of mRNA length variations in atherosclerosis (ATS) progression and reversion in ApoE-deficient mice exposed to a high-fat diet and treated with an αCD40-specific siRNA or with a sequence-scrambled siRNA as control.
View Article and Find Full Text PDFLife Sci
January 2025
College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot 010110, PR China. Electronic address:
Background: Atherosclerosis involves the buildup of macrophage-derived foam cells in the arterial intima. Facilitating the egress of these cells from plaques can significantly slow disease progression. The transmembrane receptor Unc5b, a vascular-specific axon guidance receptor, is upregulated in foam cells, and inhibits their migration from the plaques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!