Understanding the nature of the photoexcitation and ultrafast charge dynamics pathways in organic halide perovskite nanocubes and their aggregation into superlattices is key for potential applications as tunable light emitters, photon-harvesting materials, and light-amplification systems. In this work, we apply two-dimensional coherent electronic spectroscopy (2DES) to track in real time the formation of near-infrared optical excitons and their ultrafast relaxation in CH(NH)PbI nanocube superlattices. Our results unveil that the coherent ultrafast dynamics is limited by the combination of the inherent short exciton decay time (≃40 fs) and the dephasing due to the coupling with selective optical phonon modes at higher temperatures. On the picosecond time scale, we observe the progressive formation of long-lived localized trap states. The analysis of the temperature dependence of the excitonic intrinsic line width, as extracted by the antidiagonal components of the 2D spectra, unveils a dramatic change of the excitonic coherence time across the cubic to tetragonal structural transition. Our results offer a new way to control and enhance the ultrafast coherent dynamics of photocarrier generation in hybrid halide perovskite synthetic solids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11414601PMC
http://dx.doi.org/10.1021/acsphotonics.4c00105DOI Listing

Publication Analysis

Top Keywords

optical excitons
8
nanocube superlattices
8
halide perovskite
8
fate optical
4
excitons fapbi
4
fapbi nanocube
4
superlattices understanding
4
understanding nature
4
nature photoexcitation
4
ultrafast
4

Similar Publications

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

Visualization and Estimation of 0D to 1D Nanostructure Size by Photoluminescence.

Nanomaterials (Basel)

December 2024

Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania.

We elaborate a method for determining the 0D-1D nanostructure size by photoluminescence (PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk material, allowing for the calculation of their top dimensions of 2.0 nm.

View Article and Find Full Text PDF

Collective optical properties can emerge from an ordered ensemble of emitters due to interactions between the individual units. Superlattices of halide perovskite nanocrystals exhibit collective light emission, influenced by dipole-dipole interactions between simultaneously excited nanocrystals. This coupling changes both the emission energy and rate compared to the emission of uncoupled nanocrystals.

View Article and Find Full Text PDF

Light-Triggered Reversible Assembly of Halide Perovskite Nanoplatelets.

Adv Mater

December 2024

Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.

Advancements in stimuli-driven nanoactuators necessitate the discovery of photo-switchable, self-contained semiconductor nanostructures capable of precise mechanical responses. The reversible assembly of 0D CsBiI halide perovskite nanoplatelets (NPLs) between stacked and scattered configurations are demonstrated under light and dark, respectively. This sunlight-triggered perpetual flipping of the NPLs, occurring in less than a minute, is associated with a color change between brown and red.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides (TMDs) with strong exciton effects have enabled diverse light emitting devices, however, their Ångstrom thickness makes it challenging to efficiently manipulate exciton emission by themselves. Although their nanostructured multi-layer counterparts can effectively manipulate optical field at deep subwavelength thickness scale, these indirect band gap multi-layer TMDs are lack of strong luminescence, hindering their applications in light emitting devices. Here, the integration of monolayer TMDs is presented with nanostructured multi-layer TMDs, combining both strong exciton emission and optical manipulation in a single ultra-thin platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!