Enhanced Electrochemical Detection of Nonelectroactive Compounds Based on Surface Supramolecular Interactions on Chevron-like Graphene Nanoribbons Modified through Click Chemistry.

ACS Omega

Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain.

Published: September 2024

In this study, we have developed a nanostructured electrochemical sensor based on modified graphene nanoribbons tailored for the analysis of nonelectroactive compounds via a surface competitive assay. Stigmasterol, a nonelectroactive phytosterol, was selected as a representative case. Chevron-like graphene nanoribbons, chemically synthesized, were immobilized onto glassy carbon electrodes and covalently functionalized to allow the on-surface formation of a supramolecular complex. To this end, the nanoribbons were first modified through a diazotization process by electrochemical reduction of a 4-azidoaniline diazonium salt, leaving the electrode surface with azide groups exposed to solution. Next, the incorporation of a ferrocene group, as a redox probe, was carried out by a click chemistry reaction between ethynylferrocene and these azide groups. Finally, the recognition event leads to the formation of a supramolecular complex between ferrocene and a macrocyclic receptor on the electrode surface. To this end, the receptors cucurbit[7]uril, cucurbit[8]uril, and β-cyclodextrin were evaluated, with the better results obtained with β-cyclodextrin. Atomic force microscopy and scanning electron microscopy measurements were performed for the morphological characterization of the resulting electrochemical platform surface. The ability of β-cyclodextrin to form an inclusion complex with ferrocene or with stigmasterol allows to perform a competitive assay, which translates into the decrease and recovery of the ferrocene electrochemical signal. For stigmasterol determination, a linear concentration range between 200 and 750 μM and a detection limit of 60 μM were obtained, with relative errors and relative standard deviations less than 7.1 and 9.8%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411676PMC
http://dx.doi.org/10.1021/acsomega.4c06639DOI Listing

Publication Analysis

Top Keywords

graphene nanoribbons
12
nonelectroactive compounds
8
chevron-like graphene
8
nanoribbons modified
8
click chemistry
8
competitive assay
8
formation supramolecular
8
supramolecular complex
8
electrode surface
8
azide groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!