Quercetin-Derived Platinum Nanomaterials Influence Particle Stability, Catalytic, and Antimicrobial Performance.

ACS Omega

Department of Chemistry and Environmental Science BioSMART Center, New Jersey Institute of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States.

Published: September 2024

AI Article Synopsis

Article Abstract

Quercetin possesses high biological properties but low bioavailability, poor solubility, and rapid body clearance. Its structural modification is imperative for enhanced applications. Herein, we demonstrate the catalytic and antimicrobial characteristics of shape-dependent (cuboidal and peanuts) platinum nanoparticles. Modified quercetin, 4-QP, was employed as the reducing and stabilizing agent for the aqueous synthesis of PtNPs without extraneous reagents. Monodispersed platinum nanocubes (C-PtNPs) and nanopeanuts (P-PtNPs) were produced by reacting 4-QP and Pt ions in the ratios of 3:1 and 1:1, respectively. TEM characterization confirmed the formation of Pt nanocubes and Pt nanopeanuts, with their corresponding sizes of 39.1 ± 0.20 and 45.1 ± 0.24 nm. The shape-dependency of PtNPs on the nosocomial-causing bacteria, ATCC 8090 () was determined by the Agar well-diffusion assay. Under the same particle size and dose treatments, C-PtNPs and P-PtNPs exhibited 16.28 ± 0.10 and 4.50 ± 0.15 mm zones of inhibition with minimum inhibitory concentrations of 25 and 45 μg/mL, respectively. SEM analysis of C-PtNPs treated showed a damaged cell membrane and confirmed contact-killing as the antibacterial mechanism. The catalytic conversion of 4-nitrophenol (4-NP) to 4-amino phenol (4-AP) was tested using a shape-dependent PtNPs catalyst in the presence of sodium borohydride. The conversion rates () of C-PtNPs and P-PtNPs in wastewater samples from New Jersey were 0.0108 and 0.00607 s, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411542PMC
http://dx.doi.org/10.1021/acsomega.4c02948DOI Listing

Publication Analysis

Top Keywords

catalytic antimicrobial
8
c-ptnps p-ptnps
8
quercetin-derived platinum
4
platinum nanomaterials
4
nanomaterials influence
4
influence particle
4
particle stability
4
stability catalytic
4
antimicrobial performance
4
performance quercetin
4

Similar Publications

Membranes have extensive applications in catalysis, separation, antimicrobial activities, and sensing. However, developing a simple and environmentally friendly method for preparing membranes remains challenging. Here, we report a novel strategy for fabricating self-standing inorganic-organic composite films at the miscible liquid/liquid interface using a soft spray technique.

View Article and Find Full Text PDF

In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.

View Article and Find Full Text PDF

N-Arylsulfonylated C-Homoaporphines as a New Class of Antiplatelet and Antimicrobial Agents.

ACS Med Chem Lett

January 2025

Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India.

A series of novel N-arylsulfonylated C-homoaporphine alkaloids were synthesized under microwave irradiation and evaluated for their antiplatelet and antimicrobial activities. Among the series, compounds , , , , , , , , and demonstrated highly potent (∼3-fold) platelet aggregation inhibitory activity than acetylsalicylic acid (IC = 21.34 μg/mL).

View Article and Find Full Text PDF

The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens and .

View Article and Find Full Text PDF

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!