To meet the demands for non-destructive testing of uniaxial mechanical properties of welded joints of thick-wall hydrogenation reactors, this study provides an experimental investigation on whether the spherical indentation tests (SITs) can accurately characterize the uniaxial mechanical property variations along the thickness of welded joints. The phenomenologically summarized empirical method (i.e., the Kwon method) and the semi-analytical method (i.e., the simplified-IIEM) were selected as representatives, and their reliability was judged from the viewpoints of stress-strain prediction, the inversion accuracy and repeatability of strength, and the ability to characterize the variation of uniaxial mechanical properties along the thickness of welded joints. Characteristics of the inverse predictions were analyzed, and the source of errors in each method were extensively investigated. This study provides a theoretical and technical guidance for the engineering application and promotion of SITs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415657 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e37656 | DOI Listing |
Excavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Analytical and Testing Center, Northeastern University, Shenyang 110819, China.
High-performance lightweight materials are urgently needed because of energy savings and emission reduction. Here, we design a new steel with a low density of 6.41 g/cm, which is a 20% weight reduction compared to the conventional steel.
View Article and Find Full Text PDFCells
December 2024
AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.
View Article and Find Full Text PDFSci Rep
January 2025
LECIV - Civil Engineering Laboratory, UENF - State University of the North in Rio de Janeiro, Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, 28013-602, RJ, Brazil.
The correct choice of a stone aggregate for railway ballast is directly related to the stability, safety, efficiency, and maintenance costs of the track. The aggregate must meet several criteria to ensure it is the most appropriate material. Thus, the present study aimed to evaluate four distinct stones: two granites, a diabase, and a basalt, all mined in the eastern region of the state of São Paulo, Brazil, regarding their applicability as ballast.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety and Management Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!