In the realm of ground source heat pump (GSHP) installations, the operational efficiency of borehole heat exchangers (BHEs) is heavily dependent on the complex configurations of geological formations, including soil stratification and the movement of underground water. Our research investigated the influences of ground structure characteristics on the heat transfer performance of coaxial BHEs. A coaxial borehole heat exchanger with a three-dimensional design was constructed, setting a typical geology from the Xiong'an New Region as the boundary condition. The homogenous model with equivalent physical properties overpredicted the water temperature exiting the coaxial BHE in the stratified ground with groundwater advection by 0.2 °C, while underpredicted the heat transfer rate by 10.8 % for the 24-h period; There exists an optimal inlet flow velocity to balance the heat injection and enhanced heat transfer for the optimal heat transfer rate, which was 0.4 m/s in this study; The increase of groundwater advection velocity decreased the outlet temperature by 0.5 %, enhanced the heat transfer per meter by 15.5 % and contributed to a smaller thermal influence radius during the 24-h period. This will contribute to the design of coaxial BHEs in complex geological structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415681PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37442DOI Listing

Publication Analysis

Top Keywords

heat transfer
24
borehole heat
12
heat
10
transfer performance
8
performance coaxial
8
coaxial borehole
8
heat exchanger
8
coaxial bhes
8
groundwater advection
8
transfer rate
8

Similar Publications

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

Design and test of steam-injected continuous scrambled egg device.

Curr Res Food Sci

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Product Processing, Ministry of Agriculture, Beijing, 100193, China.

To solve the existing problems of low yield, uneven quality, and single form of industrially scrambled eggs, we have developed a continuous high-output steam scrambled egg device based on the principle of steam injected. By establishing calibration curves for egg, oil, and steam flow rates, determining the key parameters of the equipment, and simulating the heat transfer process between steam and egg by Computational Fluid Dynamics (CFD), we created the device and verified its production performance. The results show that the capacity of this device can reach 104.

View Article and Find Full Text PDF

The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.

View Article and Find Full Text PDF

This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.

View Article and Find Full Text PDF

Microstructural properties of wheat-based food materials change during baking. These alterations affect the final product's mechanical properties, physical attributes, and consumer satisfaction. Image processing and pore network modeling were used to analyze the variations in a cookie's microstructural properties during baking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!