Introduction: Esophageal Cancer (EC) ranks among the most common malignancies worldwide. Most EC patients acquire drug resistance to chemotherapy either intrinsically or acquired after T-DM1 treatment, which shows that increasing or decreasing the expression of particular genes might influence chemotherapeutic sensitivity or resistance. Therefore, gaining a deeper understanding of the altered expression of genes involved in EC drug resistance and developing new therapeutic methods are essential targets for continued advancement in EC therapy.

Methods: The present study aimed to find critical regulatory genes/pathways in the progression of T-DM1 resistance in OE-19 EC cells. Expression datasets were extracted from GEO omnibus. Gene interactions were analyzed, and the protein-protein interaction network was drawn. Then, enrichment analysis of the hub genes and network cluster analysis of the hub genes was performed. Finally, the genes were screened in the DrugBank database as therapeutic targets and molecular docking analysis was done on the selected targets.

Results: In the current study, nine hub genes were identified in TDM-1-resistant EC cells (CTGF, CDH17, THBS1, CXCL8, NRP1, ITGB5, EDN1, FAT1, and PTGS2). The KEGG analysis highlighted the IL-17 signaling pathway and ECM-receptor interaction pathway as the most critical pathways; cluster analysis also showed the significance of these pathways. Therefore, the genes involved in these two pathways, including CXCL8, FSCN1, PTGS2, SERPINE2, LEF1, THBS1, CCN2, TAGLN, CDH11, and ITGA6, were searched in DrugBank as therapeutic targets. The DrugBank analysis suggests a potential role for Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in reducing T-DM1 drug resistance in EC. The docking results revealed that NSAIDs, including Diclofenac, Mefenamic acid, Celecoxib, Naproxen, and Etoricoxib, significantly suppress resistant cancer cells.

Conclusion: This comprehensive bioinformatics analysis deeply explains the molecular mechanisms governing TDM-1 resistance in EC. The identified hub genes and their associated pathways offer potential targets for therapeutic interventions. Moreover, the possible role of NSAIDs in mitigating T-DM1 resistance presents an intriguing avenue for further investigation. This research contributes significantly to the field and establishes a basis for further research to enhance treatment efficacy for EC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415672PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37451DOI Listing

Publication Analysis

Top Keywords

hub genes
16
drug resistance
12
genes
9
esophageal cancer
8
analysis
8
bioinformatics analysis
8
expression genes
8
genes involved
8
t-dm1 resistance
8
analysis hub
8

Similar Publications

Identification and validation of up-regulated TNFAIP6 in osteoarthritis with type 2 diabetes mellitus.

Sci Rep

December 2024

Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

Lines of evidence have indicated that type 2 diabetes mellitus (T2DM) is an independent risk factor for osteoarthritis (OA) progression. However, the study focused on the relationship between T2DM and OA at the transcriptional level remains empty. We downloaded OA- and T2DM-related bulk RNA-sequencing and single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) dataset.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most prevalent secondary sarcoma associated with retinoblastoma (RB). However, the molecular mechanisms driving the interactions between these two diseases remain incompletely understood. This study aims to explore the transcriptomic commonalities and molecular pathways shared by RB and OS, and to identify biomarkers that predict OS prognosis effectively.

View Article and Find Full Text PDF

Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative illness that accounts for the common type of dementia among adults over the age of 65. Despite extensive studies on the pathogenesis of the disease, early diagnosis of AD is still debatable. In this research, we performed bioinformatics approaches on the AD-related E-MTAB 6094 dataset to uncover new potential biomarkers for AD diagnosis.

View Article and Find Full Text PDF

Metabolomic and Transcriptomic Analysis Reveals Metabolic-Immune Interactions in Choroid Neovascularization.

Exp Eye Res

December 2024

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China; Key laboratory of Myopia and Related Eye Diseases, NHC, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai, 200031, China. Electronic address:

Choroid neovascularization (CNV) is a distinct type of age-related macular degeneration (AMD) with a poor prognosis and responsible for the majority of vision loss in the elderly population. The laser-induced CNV model is a well-established animal model frequently used to study CNV. In this study, we performed an integrated analysis of metabolomic and transcriptomic data from CNV samples, utilizing multiple approaches including single-sample gene set enrichment analysis (ssGSEA), correlation analysis, and weighted gene co-expression network analysis (WGCNA), alongside various bioinformatics platforms, to identify key metabolic and immune signatures and to investigate their interplay during angiogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!