Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416093 | PMC |
http://dx.doi.org/10.1002/mco2.710 | DOI Listing |
Cell Rep
December 2024
Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:
The molecular underpinnings of high-grade endometrial carcinoma (HGEC) metastatic growth and survival are poorly understood. Here, we show that ascites-derived and primary tumor HGEC cell lines in 3D spheroid culture faithfully recapitulate key features of malignant peritoneal effusion and exhibit fundamentally distinct transcriptomic, proteomic, and metabolomic landscapes compared with conventional 2D monolayers. Using a genetic screening platform, we identify MAPK14 (which encodes the protein kinase p38α) as a specific requirement for HGEC in spheroid culture.
View Article and Find Full Text PDFClin Exp Med
December 2024
Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China.
This study aims to comprehensively analyze the role of the exportin (XPO) family in the development and progression of cancer. These nuclear transport proteins have been increasingly recognized for their involvement in oncogenic processes and tumor growth. We utilized updated public databases and bioinformatics tools to assess the expression levels of the XPO family and their associations with key oncological markers including patient survival, immune subtypes, tumor microenvironment, stemness scores, drug sensitivity, and DNA methylation across various cancers.
View Article and Find Full Text PDFCell Biol Int
December 2024
Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
The high plasticity of cells undergoing epithelial-mesenchymal transition (EMT) promotes increased tumor heterogeneity, and its interaction with tumor-associated stromal cells appears to contribute to developing a stemness phenotype. Cells with these characteristics exhibit increased resistance to chemotherapy and radiotherapy, leading to disease relapse and metastasis. Here, we discuss the activation of the Wnt/β-catenin pathway in promoting EMT and stemness within the context of cellular resistance to these therapies.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China.
Background: Cancer stem cells (CSCs) have unique metabolic characteristics and are hypothesized to contribute significantly to the recurrence and drug resistance of glioblastoma multiforme (GBM). However, the reliance on mitochondrial metabolism and the underlying mechanism of glioblastoma stem cells (GSCs) remains to be elucidated.
Methods: To quantify differential mitochondrial protein expression between GSCs and differentiated cells, a mass spectrum screen was applied by the Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) technique.
Cell Biol Toxicol
December 2024
Department of General Surgery, First Medical Center of Chinese, PLA General Hospital, Haidian District, No.28 Fuxing Road, Beijing, 100853, China.
Accumulating evidences have indicated that cancer stem cells (CSCs) can initiate tumor progression and cause recurrence after therapy. However, specific markers of gastric CSCs (GCSCs) from different origins have not been comprehensively revealed. Here, we further detected whether cell populations labelled with CD44 and Lgr5, well-recognized stem markers for gastric cancer (GC), can better emphasize cancer initiation, therapeutic resistance and recurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!