Silicon oxycarbide (SiOC) is drawing significant attention as a potential anode material for lithium-ion batteries due to its remarkable cycle life and the distinctive Si-O-C hybrid bonding within its structure. However, a notable drawback of SiOC-based electrodes is their poor electrical conductivity. In this study, we synthesized sulfur-doped silicon oxycarbide (S-SiOC) facile one-pot pyrolysis from a mixture of commercial silicone oil with 1-dodecanethiol. Upon testing the S-SiOC electrode materials, we observed significant attributes, including an outstanding specific capacity (650 mA h g at 1 A g), exceptional capacity retention (89.2% after 2000 cycles at 1 A g), and substantial potential for high mass loading of active materials (up to 2.2 mg cm). Sulfur doping led to enhanced diffusivity of lithium ions, as investigated through cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT) tests. Consequently, this sulfur-doped silicon oxycarbide, exhibiting excellent electrochemical performance, holds promising potential as an anode material for lithium-ion batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413737PMC
http://dx.doi.org/10.1039/d4ra04608kDOI Listing

Publication Analysis

Top Keywords

silicon oxycarbide
16
sulfur-doped silicon
12
potential anode
8
anode material
8
material lithium-ion
8
lithium-ion batteries
8
oxycarbide
4
oxycarbide facile
4
facile pyrolysis
4
pyrolysis process
4

Similar Publications

Microstructure and Bioactivity of Ca- and Mg-Modified Silicon Oxycarbide-Based Amorphous Ceramics.

Materials (Basel)

December 2024

National Key Laboratory of Science and Technology on High-Strength Structural Materials, Central South University, Changsha 410083, China.

Silicon oxycarbide (SiOC), Ca- and Mg-modified silicon oxycarbide (SiCaOC and SiMgOC) were synthesized via sol-gel processing with subsequent pyrolysis in an inert gas atmosphere. The physicochemical structures of the materials were characterized by XRD, SEM, FTIR, and Si MAS NMR. Biocompatibility and in vitro bioactivity were detected by MTT, cell adhesion assay, and simulated body fluid (SBF) immersion test.

View Article and Find Full Text PDF

Polysiloxanes with silver nanoparticles (Ag NPs) have garnered attention for their distinctive physicochemical properties, which make them promising candidates for advanced material applications. This study presents a systematic investigation into the thermal properties and degradation mechanisms of polysiloxane/Ag nanocomposites, emphasising the innovative incorporation of Ag NPs directly into polysiloxane networks via in situ reduction of Ag⁺ ions by Si-H groups. Six polysiloxane matrices were synthesised by hydrosilylation of poly(methylhydrosiloxane) (PMHS) or poly(vinylsiloxane) (polymer V) with three cross-linking agents of varying molecular structures and functionality.

View Article and Find Full Text PDF

This article presents a study on the functional properties and morphology of coatings based on amorphous silicon oxycarbide modified with phosphate ions and comodified with aluminum and boron. The objective of this modification was to enhance the biocompatibility and bioactivity without affecting its protective properties. The comodification was aimed toward stabilization of phosphate in the structure.

View Article and Find Full Text PDF

Metallic Sn (Tin) is a promising anode material for Na-ion batteries owing to its high theoretical capacity of 870 mAh g. However, its large volumetric changes, interfacial instability, and sluggish sodiation kinetics limit its practical applications. Herein, a hierarchical yolk-shell nanohybrid composed of an Sn yolk and a Carbon/Silicon oxycarbide (C/SiOC) bilayer shell is prepared via the simple pyrolysis of a silicone oil dispersion containing an Sn precursor.

View Article and Find Full Text PDF

Modulation of Free Carbon Structures in Polysiloxane-Derived Ceramics for Anode Materials in Lithium-Ion Batteries.

Molecules

September 2024

State Key Laboratory of Fine Chemicals, Liaoning High Performance Polymer Engineering Research Center, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Polymer-derived silicon oxycarbide (SiOC) ceramics have garnered significant attention as novel silicon-based anode materials. However, the low conductivity of SiOC ceramics is a limiting factor, reducing both their rate capability and cycling stability. Therefore, controlling the free carbon content and its degree of graphitization within SiOC is crucial for determining battery performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!