A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recovery of Learning and Memory Deficits Despite Persistent Pyknosis of the Hippocampal Pyramidal Neurons of Adult Hydrocephalic Mice. | LitMetric

Background: The hippocampal alterations resulting from hydrocephalus are associated with various cognitive dysfunctions. Reduced learning and memory are early functional deficits that recover with time in experimental hydrocephalus. This study investigated the recovery processes of learning and memory loss in relation to the morphology of hippocampal pyramidal neurons and the degree of expansion of the ventricles.

Materials And Methods: Hydrocephalus was induced in adult mice by intracisternal injection of sterile kaolin while controls received sham operation. Neurobehavioral tests for memory and learning were conducted, after which the animals were sacrificed in batches: 7 (acute) and 28 (subacute) days postinduction. After sacrifice, mice were categorized into mild and moderate hydrocephalus, and their fixed brain samples were processed for hematoxylin, eosin, and Nissl stains.

Results: In moderate acute hydrocephalus, the indices of learning and memory were reduced escape latency (67.20 ± 12.83 s), number of platform crossing (4.000 ± 1.658), duration in platform quadrant (4.000 ± 1.658), and percent of total investigation (44.857% ± 3.981%) but not in the subacute stage. Pyknotic indices (PI) were significantly higher in the cornu ammonis (CA)1 and 3 regions in all hydrocephalic groups than in controls. However, within groups, PI was significantly higher only in the CA1 of moderate acute (28.149% ± 1.875%) compared to moderate subacute hydrocephalic group (12.903% ± 3.23%).

Conclusion: Hydrocephalus caused cellular injury to the hippocampus associated with spatial learning and memory deficits. However, these functional deficits were partially reversed in moderate subacute hydrocephalus despite the persistence of the structural alterations in the CA1 and CA3 subregions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412584PMC
http://dx.doi.org/10.4103/jwas.jwas_118_23DOI Listing

Publication Analysis

Top Keywords

learning memory
20
memory deficits
8
hippocampal pyramidal
8
pyramidal neurons
8
functional deficits
8
moderate acute
8
moderate subacute
8
hydrocephalus
7
memory
6
learning
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!