Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In the food manufacturing industry, exposure to inhalable aerosols contributes to respiratory illnesses such as occupational asthma and rhinitis. However, there is a lack of comprehensive exposure assessment studies. This study evaluated occupational exposure to inhalable aerosols in an instant powdered food manufacturing plant during work operations involving dried food and powders.
Methods: In total, 50 workers from an instant powdered food manufacturing plant were recruited. Personal inhalable aerosol exposure measurements were taken for both full-shift and task-based activities. The concentrations of inhalable aerosols were analyzed to identify any variation within and across departments, as well as between seasons, handedness, and sex.
Results: In total, 134 personal air samples were collected, and the particulate mass was determined gravimetrically. The concentrations of inhalable aerosols ranged from 0.1 to 27 mg/m for full-shift exposure measurements and 3.1 to 73 mg/m for task-based measurements. Statistically significant differences in mean aerosol concentrations were found across departments (A:B < 0.001, A:C < 0.05, B:C < 0.001) and between seasons ( < 0.001).
Conclusion: This study revealed high exposure to inhalable aerosols among workers, particularly those involved in manual weighing, mixing, and adding powders. The significant differences between departments highlight the specific activities contributing to increased inhalable aerosol concentrations. Seasonal variations were also evident, with autumn showing higher concentrations of inhalable aerosols in all departments compared with summer. These findings emphasize the importance of understanding the distribution of aerosol concentrations across different work tasks and departments, particularly during different seasons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410500 | PMC |
http://dx.doi.org/10.1016/j.shaw.2024.05.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!