Objective: By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment.
Methods: This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions.
Results: The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3).
Conclusion: Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416764 | PMC |
http://dx.doi.org/10.7717/peerj.17980 | DOI Listing |
PeerJ
September 2024
College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China.
Front Genet
August 2024
College of Animal Science and Technology, Tarim University, Xinjiang, China.
J Hyg Epidemiol Microbiol Immunol
April 1990
Kirghiz State Medical Institute, Kirghiz Research Institute of Tuberculosis, Frunze, USSR.
Macrophage-lymphocyte interaction was studied on 121 CBA mice during a 2-hour contact of lymph-node cells of non-immune mice with a monolayer of peritoneal macrophages of BCG-immunized mice and subsequent intravenous administration of 4.10(7) pre-incubated lymphocytes to syngenic recipients. Sensitivity to tuberculin was demonstrated in the recipients by means of blast-transformation reaction of spleen cells (stimulation index was evaluated according to incorporation of 3H-thymidine--SI = 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!