A splice-switch oligonucleotide loaded self-cleavable DNA nanogel.

Chem Commun (Camb)

Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

Published: October 2024

AI Article Synopsis

  • A DNA nanogel that can cleave itself has been created, and it's loaded with a specific type of RNA molecule called a splice-switch oligonucleotide (SSO).
  • This nanogel is designed to break apart under acidic conditions, specifically at a pH of 5.0.
  • When the nanogel disintegrates, it releases the SSO in its original form without any changes.

Article Abstract

A self-cleavable DNA nanogel loaded with splice-switch oligonucleotide (SSO) has been developed. Under acidic conditions (pH 5.0), cleavage of the acid-labile chemical linker and generation of the i-motif structure led to the disintegration of the DNA nanogel and efficient release of SSO in its unaltered native state.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc01942cDOI Listing

Publication Analysis

Top Keywords

dna nanogel
12
splice-switch oligonucleotide
8
self-cleavable dna
8
oligonucleotide loaded
4
loaded self-cleavable
4
nanogel self-cleavable
4
nanogel loaded
4
loaded splice-switch
4
oligonucleotide sso
4
sso developed
4

Similar Publications

Biomolecular assemblies are fundamental to life and viral disease. The spatiotemporal coordination of viral replication and assembly is largely unknown. Here, we developed a dual-color click chemistry procedure for imaging adenovirus DNA (vDNA) replication in the cell nucleus.

View Article and Find Full Text PDF

Atherosclerosis-induced lethal cardiovascular disease remains a severe healthcare threat due to the limited drug efficiency and untimely prediction of high-risk events caused by inadequate target specificity of medications, incapable recognition of insensitive patients, and variable morphology of vulnerable plaques. Therefore, it is necessary to develop efficient strategies to improve the diagnosis accuracy and achieve visualized treatment of atherosclerosis. Herein, we establish an inflamed endothelium-targeted three-in-one nucleic acid nanogel system that can reverse the inflammatory state of endothelial cells (ECs) in plaques and simultaneously achieve real-time monitoring of the therapy process for efficient atherosclerosis diagnosis and treatment.

View Article and Find Full Text PDF

Supramolecular PEG-DNA-Ferrocene Nanogels for Synergistically Amplified Chemodynamic Therapy via Cascade Reactions.

Biomacromolecules

November 2024

Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.

Chemodynamic therapy (CDT) has been limited by the tumor microenvironment, such as the low concentration of hydrogen peroxide (HO). The combination of therapeutic strategies that increase HO with CDT can synergistically enhance the therapeutic effect. Herein, a novel supramolecular PEG-DNA-ferrocene nanogel that can codeliver glucose oxidase (GOx) and the hypoxia-activable prodrug tirapazamine (TPZ) was developed to synergistically amplify CDT via cascade reactions.

View Article and Find Full Text PDF

A splice-switch oligonucleotide loaded self-cleavable DNA nanogel.

Chem Commun (Camb)

October 2024

Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A self-cleavable DNA nanogel loaded with splice-switch oligonucleotide (SSO) has been developed. Under acidic conditions (pH 5.0), cleavage of the acid-labile chemical linker and generation of the i-motif structure led to the disintegration of the DNA nanogel and efficient release of SSO in its unaltered native state.

View Article and Find Full Text PDF

Pharmaceutical chitosan hydrogels: A review on its design and applications.

Int J Biol Macromol

November 2024

Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Universiti Malaya-Research Center for Biopharmaceuticals and Advanced Therapeutics (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. Electronic address:

Chitosan (CS) has become a focal point of extensive research in the pharmaceutical industry due to its remarkable biodegradability, biocompatibility and sustainability. Chitosan hydrogels (CS HGs) are characterized by their viscoelasticity, flexibility and softness. The polar surfaces exhibit properties that mitigate interfacial tension between the hydrogel and body fluids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: