A self-cleavable DNA nanogel loaded with splice-switch oligonucleotide (SSO) has been developed. Under acidic conditions (pH 5.0), cleavage of the acid-labile chemical linker and generation of the i-motif structure led to the disintegration of the DNA nanogel and efficient release of SSO in its unaltered native state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc01942c | DOI Listing |
Sci Adv
October 2024
Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland.
Biomolecular assemblies are fundamental to life and viral disease. The spatiotemporal coordination of viral replication and assembly is largely unknown. Here, we developed a dual-color click chemistry procedure for imaging adenovirus DNA (vDNA) replication in the cell nucleus.
View Article and Find Full Text PDFBiomaterials
March 2025
Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China. Electronic address:
Atherosclerosis-induced lethal cardiovascular disease remains a severe healthcare threat due to the limited drug efficiency and untimely prediction of high-risk events caused by inadequate target specificity of medications, incapable recognition of insensitive patients, and variable morphology of vulnerable plaques. Therefore, it is necessary to develop efficient strategies to improve the diagnosis accuracy and achieve visualized treatment of atherosclerosis. Herein, we establish an inflamed endothelium-targeted three-in-one nucleic acid nanogel system that can reverse the inflammatory state of endothelial cells (ECs) in plaques and simultaneously achieve real-time monitoring of the therapy process for efficient atherosclerosis diagnosis and treatment.
View Article and Find Full Text PDFBiomacromolecules
November 2024
Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
Chemodynamic therapy (CDT) has been limited by the tumor microenvironment, such as the low concentration of hydrogen peroxide (HO). The combination of therapeutic strategies that increase HO with CDT can synergistically enhance the therapeutic effect. Herein, a novel supramolecular PEG-DNA-ferrocene nanogel that can codeliver glucose oxidase (GOx) and the hypoxia-activable prodrug tirapazamine (TPZ) was developed to synergistically amplify CDT via cascade reactions.
View Article and Find Full Text PDFChem Commun (Camb)
October 2024
Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A self-cleavable DNA nanogel loaded with splice-switch oligonucleotide (SSO) has been developed. Under acidic conditions (pH 5.0), cleavage of the acid-labile chemical linker and generation of the i-motif structure led to the disintegration of the DNA nanogel and efficient release of SSO in its unaltered native state.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Universiti Malaya-Research Center for Biopharmaceuticals and Advanced Therapeutics (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. Electronic address:
Chitosan (CS) has become a focal point of extensive research in the pharmaceutical industry due to its remarkable biodegradability, biocompatibility and sustainability. Chitosan hydrogels (CS HGs) are characterized by their viscoelasticity, flexibility and softness. The polar surfaces exhibit properties that mitigate interfacial tension between the hydrogel and body fluids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!