The cardiotoxicity induced by immune checkpoint inhibitors (ICIs) is associated with high mortality rates. T cells play an important role in ICI-induced cardiac injury. The inhibition of local T-cell activity is considered an effective strategy for alleviating ICI-related cardiotoxicity. Tumor-derived extracellular vesicles (EVs) contribute to immunosuppression via PD-L1 overexpression. In this study, a bioorthogonal metabolic engineering-driven EV redirecting (Biomeder) strategy for in situ engineered EVs with myocardial-targeting peptides is developed. Accumulated tumor-derived EV (TuEVs) reverses the immune environment in the heart by increasing PD-L1 levels in cardiomyocytes and/or by directly inhibiting T-cell activity. More importantly, it is found that the redirection of TuEVs further disrupts immunosuppression in tumors, which facilitates anti-tumor activity. Thus, redirecting TuEVs to the heart simultaneously enhances the antitumor efficacy and safety of ICI-based therapy. Furthermore, the Biomeder strategy is successfully expanded to prevent ICI-induced type 1 diabetes. This Biomeder technique is a universal method for the treatment of various ICI-related adverse events.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202412340DOI Listing

Publication Analysis

Top Keywords

immune checkpoint
8
bioorthogonal metabolic
8
metabolic engineering-driven
8
t-cell activity
8
biomeder strategy
8
reversing immune
4
checkpoint inhibitor-associated
4
inhibitor-associated cardiotoxicity
4
cardiotoxicity bioorthogonal
4
engineering-driven extracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!