A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High accuracy in lower limb alignment analysis using convolutional neural networks, with improvements needed for joint-level metrics. | LitMetric

Objective: Evaluation of long-leg standing radiographs (LSR) is a standardised procedure for analysis of primary or secondary deformities of the lower limbs. Deep-learning convolutional neural networks (CNN) offer the potential to enhance radiological measurement by increasing reproducibility and accuracy. This study aims to evaluate the measurement accuracy of an automated CNN-based planning tool (mediCAD® 7.0; mediCAD Hectec GmbH) of lower limb deformities.

Methods: In a retrospective single-centre study, 164 pre- and postoperative bilateral LSRs with uni- or bilateral posttraumatic knee arthritis undergoing total knee arthroplasty (TKA) were enroled. Alignment parameters relevant to knee arthroplasty and deformity correction were analysed independently by two observers and a CNN. The intraclass correlation coefficient (ICC) was used to evaluate the accuracy between observers and the CNN, which was further evaluated using absolute deviations, limits of agreement (LoA) and root mean square error (RMSE).

Results: CNN evaluation demonstrated high consistency in measuring leg length (ICC > 0.99) and overall lower limb alignment measures of mechanical tibio-femoral angle (mTFA) (ICC > 0.97; RMSE < 1.1°). The mean absolute difference between angular measurements were low for overall lower limb alignment (mTFA 0.49-0.61°) and high for specific joint angles (aMPFA 3.86-4.50°). Accuracy at specific joint angles like the mechanical proximal tibial angle (MPTA) and the mechanical lateral distal femur angle (mLDFA) varied between lower limbs with deformity, with and without TKA with greatest difference for TKA (ICC 0.22-0.85; RMSE 1.72-3.65°).

Conclusion: Excellent accuracy was observed between manual and automated measurements for overall alignment and leg length, but joint-level metrics need further improvement especially in case of TKA similar to other existing algorithms. Despite the observed deviations, the time-efficient nature of the algorithm improves the efficiency of the preoperative planning process.

Level Of Evidence: IV.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ksa.12481DOI Listing

Publication Analysis

Top Keywords

lower limb
12
limb alignment
8
convolutional neural
8
neural networks
8
knee arthroplasty
8
observers cnn
8
high accuracy
4
lower
4
accuracy lower
4
alignment analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!