Plant organs achieve their specific size and shape through the coordination of cell division and cell expansion, processes that are profoundly influenced by environmental cues. Cytokinesis during cell division depends on the position of the cytokinetic wall, but how this process responses to environment fluctuations remains underexplored. Here, we investigated a regulatory module involving C2H2-type zinc finger protein (C2H2-ZFP) in leaf morphology during drought stress. A total of 123 C2H2-ZFP members were identified through a comparative genome survey in Populus alba × P. glandulosa '84K'. Among them, PagSUPa, an orthologous gene of Arabidopsis SUPERMAN, was selected due to its responsiveness to drought stress and was further confirmed to play a role in leaf development. Phenotypic characterization and cellular analysis revealed that PagSUPa fine-tunes the duration of cell proliferation in the adaxial epidermis, thereby influencing leaf morphology by modulating leaf adaxial-abaxial polarity. Additionally, we found that PagSUPa directly suppresses the expression of PHRAGMOPLAST ORIENTING KINESIN1 (PagPOK1) and PagPOK2, genes encoding proteins involved in phragmoplast orientation and position, which results in impaired cytokinesis and cell wall organization. This study provides novel insights into the regulatory network governed by the SUP gene during leaf development, specifically in relation to cell division.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!